SLACK: Attacking LiDAR-based SLAM with Adversarial Point Injections
- URL: http://arxiv.org/abs/2504.03089v1
- Date: Thu, 03 Apr 2025 23:52:49 GMT
- Title: SLACK: Attacking LiDAR-based SLAM with Adversarial Point Injections
- Authors: Prashant Kumar, Dheeraj Vattikonda, Kshitij Madhav Bhat, Kunal Dargan, Prem Kalra,
- Abstract summary: No major work exists that studies learning-based attacks on LiDAR-based SLAM.<n>Our work proposes SLACK, an end-to-end deep generative adversarial model to attack LiDAR scans with several point injections without deteriorating LiDAR quality.
- Score: 1.6567468717846674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of learning-based methods for the LiDAR makes autonomous vehicles vulnerable to adversarial attacks through adversarial \textit{point injections (PiJ)}. It poses serious security challenges for navigation and map generation. Despite its critical nature, no major work exists that studies learning-based attacks on LiDAR-based SLAM. Our work proposes SLACK, an end-to-end deep generative adversarial model to attack LiDAR scans with several point injections without deteriorating LiDAR quality. To facilitate SLACK, we design a novel yet simple autoencoder that augments contrastive learning with segmentation-based attention for precise reconstructions. SLACK demonstrates superior performance on the task of \textit{point injections (PiJ)} compared to the best baselines on KITTI and CARLA-64 dataset while maintaining accurate scan quality. We qualitatively and quantitatively demonstrate PiJ attacks using a fraction of LiDAR points. It severely degrades navigation and map quality without deteriorating the LiDAR scan quality.
Related papers
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
We present LiDAR-GS, a real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes.<n>The method achieves state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
We propose a novel framework for real-time LiDAR odometry and mapping based on LOAM architecture for fast moving platforms.
Our framework utilizes semantic information produced by a deep learning model to improve point-to-line and point-to-plane matching.
We study the effect of improving the matching process on the robustness of LiDAR odometry against high speed motion.
arXiv Detail & Related papers (2024-03-05T16:53:24Z) - ADoPT: LiDAR Spoofing Attack Detection Based on Point-Level Temporal
Consistency [11.160041268858773]
Deep neural networks (DNNs) are increasingly integrated into LiDAR-based perception systems for autonomous vehicles (AVs)
We aim to address the challenge of LiDAR spoofing attacks, where attackers inject fake objects into LiDAR data and fool AVs to misinterpret their environment and make erroneous decisions.
We propose ADoPT (Anomaly Detection based on Point-level Temporal consistency), which quantitatively measures temporal consistency across consecutive frames and identifies abnormal objects based on the coherency of point clusters.
In our evaluation using the nuScenes dataset, our algorithm effectively counters various LiDAR spoofing attacks, achieving a low (
arXiv Detail & Related papers (2023-10-23T02:31:31Z) - DELO: Deep Evidential LiDAR Odometry using Partial Optimal Transport [23.189529003370303]
Real-time LiDAR-based odometry is imperative for many applications like robot navigation, globally consistent 3D scene map reconstruction, or safe motion-planning.
We introduce a novel deep learning-based real-time (approx. 35-40ms per frame) LO method that jointly learns accurate frame-to-frame correspondences and model's predictive uncertainty (PU) as evidence to safe-guard LO predictions.
We evaluate our method on KITTI dataset and show competitive performance, even superior generalization ability over recent state-of-the-art approaches.
arXiv Detail & Related papers (2023-08-14T14:06:21Z) - LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels [50.40632021583213]
We propose synthesizing additional LiDAR point clouds from novel viewpoints without physically driving at dangerous positions.
We train a deep learning model, which takes a LiDAR scan as input and predicts the future trajectory as output.
A waypoint controller is then applied to this predicted trajectory to determine the throttle and steering labels of the ego-vehicle.
arXiv Detail & Related papers (2023-08-02T20:46:43Z) - Detecting the Anomalies in LiDAR Pointcloud [8.827947115933942]
Adverse weather conditions may cause the LiDAR to produce pointcloud with abnormal patterns such as scattered noise points and uncommon intensity values.
We propose a novel approach to detect whether a LiDAR is generating anomalous pointcloud by analyzing the pointcloud characteristics.
arXiv Detail & Related papers (2023-07-31T22:53:42Z) - On the Exploitability of Instruction Tuning [103.8077787502381]
In this work, we investigate how an adversary can exploit instruction tuning to change a model's behavior.
We propose textitAutoPoison, an automated data poisoning pipeline.
Our results show that AutoPoison allows an adversary to change a model's behavior by poisoning only a small fraction of data.
arXiv Detail & Related papers (2023-06-28T17:54:04Z) - LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken
Assumptions, and New Attack Strategies [26.9731228822657]
A recent line of research finds that one can manipulate the LiDAR point cloud and fool object detectors by firing malicious lasers against LiDAR.
We conduct the first large-scale measurement study on LiDAR spoofing attack capabilities on object detectors with 9 popular LiDARs.
We uncover a total of 15 novel findings, including not only completely new ones due to the measurement angle novelty, but also many that can directly challenge the latest understandings in this problem space.
arXiv Detail & Related papers (2023-03-19T03:46:27Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.