LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph
- URL: http://arxiv.org/abs/2504.03137v1
- Date: Fri, 04 Apr 2025 03:03:47 GMT
- Title: LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph
- Authors: Tu Ao, Yanhua Yu, Yuling Wang, Yang Deng, Zirui Guo, Liang Pang, Pinghui Wang, Tat-Seng Chua, Xiao Zhang, Zhen Cai,
- Abstract summary: Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.<n> Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.<n>We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
- Score: 57.382255728234064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning. However, delays in knowledge updates may cause them to reason incorrectly or produce harmful results. Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs by structurally organizing and connecting a wide range of entities and relations. Existing KG-based LLM reasoning methods only inject KGs' knowledge into prompts in a textual form, ignoring its structural information. Moreover, they mostly rely on close-source models or open-source models with large parameters, which poses challenges to high resource consumption. To address this, we propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF), which leverages the full potential of LLMs to tackle complex reasoning tasks in a parameter-efficient manner. Specifically, LightPROF follows a "Retrieve-Embed-Reason process", first accurately, and stably retrieving the corresponding reasoning graph from the KG through retrieval module. Next, through a Transformer-based Knowledge Adapter, it finely extracts and integrates factual and structural information from the KG, then maps this information to the LLM's token embedding space, creating an LLM-friendly prompt to be used by the LLM for the final reasoning. Additionally, LightPROF only requires training Knowledge Adapter and can be compatible with any open-source LLM. Extensive experiments on two public KGQA benchmarks demonstrate that LightPROF achieves superior performance with small-scale LLMs. Furthermore, LightPROF shows significant advantages in terms of input token count and reasoning time.
Related papers
- Thinking with Knowledge Graphs: Enhancing LLM Reasoning Through Structured Data [0.9284740716447338]
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation.<n>Recent research has shown promising results in leveraging knowledge graphs (KGs) to enhance LLM performance.<n>We have developed different techniques that tightly integrate KG structures and semantics into LLM representations.
arXiv Detail & Related papers (2024-12-14T02:51:47Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
We study how large language models (LLMs) process and interpret knowledge graphs (KGs)<n>At the literal level, we reveal LLMs' preferences for various input formats.<n>At the attention distribution level, we discuss the underlying mechanisms driving these preferences.
arXiv Detail & Related papers (2024-02-18T10:44:03Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
We propose an autonomous LLM-based agent framework, called KG-Agent.
In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory.
To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG.
arXiv Detail & Related papers (2024-02-17T02:07:49Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - KnowGPT: Knowledge Graph based Prompting for Large Language Models [28.605161596626875]
We introduce a Knowledge Graph based PrompTing framework, namely KnowGPT, to enhance Large Language Models with domain knowledge.
KnowGPT contains a knowledge extraction module to extract the most informative knowledge from KGs, and a context-aware prompt construction module to automatically convert extracted knowledge into effective prompts.
KnowGPT achieves a 92.6% accuracy on OpenbookQA leaderboard, comparable to human-level performance.
arXiv Detail & Related papers (2023-12-11T07:56:25Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
parameter-efficient fine-tuning (PEFT) is a promising approach to efficiently specialize large language models (LLMs) to task-specific data.<n>Our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.