Origin of the quantum operator formalism and its connection with linear response theory
- URL: http://arxiv.org/abs/2504.03144v1
- Date: Fri, 04 Apr 2025 03:44:18 GMT
- Title: Origin of the quantum operator formalism and its connection with linear response theory
- Authors: Ana María Cetto, Luis de la Peña,
- Abstract summary: We show that quantum mechanics in the Heisenberg representation can be understood as a linear response theory.<n>We identify a one-to-one relationship between the response variables and the corresponding operators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Linear response theory is concerned with the way in which a physical system reacts to a small change in the applied forces. Here we show that quantum mechanics in the Heisenberg representation can be understood as a linear response theory. To this effect, we first address the question of the physical origin of the quantum operator formalism by considering the interaction of a bound electron with the radiation field, including the zero-point component, following the approach of stochastic electrodynamics. Once the electron has reached a stationary state, it responds linearly and resonantly to a set of modes of the driving radiation field. Such a response can lead the system to a new stationary state. Identifying a one-to-one relationship between the response variables and the corresponding operators, results in the (x,p) commutator as the Poisson bracket of these variables with respect to the driving field amplitudes. To account for the order of the response variables, which is reflected in the non-commutativity of the operators, we introduce the concept of ordered covariance. The results obtained allow to establish a natural contact with linear response theory at the fundamental quantum level.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - A linear response framework for simulating bosonic and fermionic
correlation functions illustrated on quantum computers [58.720142291102135]
Lehmann formalism for obtaining response functions in linear response has no direct link to experiment.
Within the context of quantum computing, we make the experiment an inextricable part of the quantum simulation.
We show that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material.
arXiv Detail & Related papers (2023-02-20T19:01:02Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Vibrational response functions for multidimensional electronic
spectroscopy in non-adiabatic models [0.0]
We report analytical expressions for the response functions corresponding to a class of model systems.
These are characterized by the coupling between the diabatic electronic states and the vibrational degrees of freedom.
The approach is then applied to the derivation of third-order response functions describing different physical processes.
arXiv Detail & Related papers (2022-10-03T09:46:59Z) - Spin Hall conductivity of interacting two-dimensional electron systems [0.0]
path-integral approach incorporated within the Keldysh formalism is used to derive the kinetic equation for the semiclassical Green's function.
We discuss the frequency dependence of the spin Hall conductivity and further elucidate the role of electron interactions at finite temperatures for both the ballistic and diffusive regimes of transport.
arXiv Detail & Related papers (2022-08-08T03:13:13Z) - Role of the electromagnetic vacuum in the transition from classical to
quantum mechanics [0.0]
We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field (ZPF)
We reveal the mechanism that takes it from the initially classical description to the final quantum-mechanical one.
arXiv Detail & Related papers (2022-03-21T23:57:52Z) - On the physical origin of the quantum operator formalism [0.0]
We offer a clear physical explanation for the emergence of the quantum operator formalism.
We revisit the role of the vacuum field in quantum mechanics.
arXiv Detail & Related papers (2020-11-24T02:44:44Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.