Beyond the Next Token: Towards Prompt-Robust Zero-Shot Classification via Efficient Multi-Token Prediction
- URL: http://arxiv.org/abs/2504.03159v1
- Date: Fri, 04 Apr 2025 04:39:51 GMT
- Title: Beyond the Next Token: Towards Prompt-Robust Zero-Shot Classification via Efficient Multi-Token Prediction
- Authors: Junlang Qian, Zixiao Zhu, Hanzhang Zhou, Zijian Feng, Zepeng Zhai, Kezhi Mao,
- Abstract summary: Minor changes in prompt can cause significant discrepancies in model performance.<n>We propose Placeholding Parallel Prediction (P3), a novel approach that predicts token probabilities across multiple positions.<n>Experiments show improved accuracy and up to 98% reduction in the standard deviation across prompts.
- Score: 12.92060812931049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot text classification typically relies on prompt engineering, but the inherent prompt brittleness of large language models undermines its reliability. Minor changes in prompt can cause significant discrepancies in model performance. We attribute this prompt brittleness largely to the narrow focus on nexttoken probabilities in existing methods. To address this, we propose Placeholding Parallel Prediction (P3), a novel approach that predicts token probabilities across multiple positions and simulates comprehensive sampling of generation paths in a single run of a language model. Experiments show improved accuracy and up to 98% reduction in the standard deviation across prompts, boosting robustness. Even without a prompt, P3 maintains comparable performance, reducing the need for prompt engineering.
Related papers
- DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation [2.4555276449137042]
We propose a family of three new decoding methods by leveraging a mathematical analysis of the token probability distribution.<n>Our approach consistently performs at least as well as current alternatives in terms of quality and diversity.
arXiv Detail & Related papers (2025-02-19T19:00:02Z) - CR-UTP: Certified Robustness against Universal Text Perturbations on Large Language Models [12.386141652094999]
Existing certified robustness based on random smoothing has shown considerable promise in certifying the input-specific text perturbations.
A naive method is to simply increase the masking ratio and the likelihood of masking attack tokens, but it leads to a significant reduction in both certified accuracy and the certified radius.
We introduce a novel approach, designed to identify a superior prompt that maintains higher certified accuracy under extensive masking.
arXiv Detail & Related papers (2024-06-04T01:02:22Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Unleashing the Multilingual Encoder Potential: Boosting Zero-Shot
Performance via Probability Calibration [12.424785560515094]
Pretrained multilingual encoder models can directly perform zero-shot multilingual tasks or linguistic probing by reformulating the input examples into cloze-style prompts.
This method is limited by the model's bias toward predicting label words which frequently occurred during the pretraining.
We combine the models with calibration techniques which modify the probabilities of label words predicted by the models.
arXiv Detail & Related papers (2023-10-08T08:31:05Z) - Closing the Curious Case of Neural Text Degeneration [91.22954750742183]
We provide a theoretical explanation for the effectiveness of the truncation sampling.
We show that we can leverage a known source of model errors, the softmax bottleneck, to prove that certain tokens have nonzero true probability.
Our evaluations show that our method outperforms its threshold-based counterparts for low-entropy text generation.
arXiv Detail & Related papers (2023-10-02T23:16:25Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z) - Prompt Consistency for Zero-Shot Task Generalization [118.81196556175797]
In this paper, we explore methods to utilize unlabeled data to improve zero-shot performance.
Specifically, we take advantage of the fact that multiple prompts can be used to specify a single task, and propose to regularize prompt consistency.
Our approach outperforms the state-of-the-art zero-shot learner, T0, on 9 out of 11 datasets across 4 NLP tasks by up to 10.6 absolute points in terms of accuracy.
arXiv Detail & Related papers (2022-04-29T19:18:37Z) - Exploring the Universal Vulnerability of Prompt-based Learning Paradigm [21.113683206722207]
We find that prompt-based learning bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting.
However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text.
We explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text.
arXiv Detail & Related papers (2022-04-11T16:34:10Z) - Calibrate Before Use: Improving Few-Shot Performance of Language Models [68.17016463756474]
GPT-3 can perform numerous tasks when provided a natural language prompt that contains a few training examples.
We show that this type of few-shot learning can be unstable.
The choice of prompt format, training examples, and even the order of the training examples can cause accuracy to vary from near chance to near state-of-the-art.
arXiv Detail & Related papers (2021-02-19T00:23:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.