Persuasive Calibration
- URL: http://arxiv.org/abs/2504.03211v1
- Date: Fri, 04 Apr 2025 06:49:56 GMT
- Title: Persuasive Calibration
- Authors: Yiding Feng, Wei Tang,
- Abstract summary: We adopt the standard calibration framework that regulates predictions to be unbiased conditional on their own value.<n>We show that the optimal predictor is over-(resp. under-confident) confident for high (resp. low) true expected outcomes, while remaining perfectly in the middle.
- Score: 15.651406777700517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce and study the persuasive calibration problem, where a principal aims to provide trustworthy predictions about underlying events to a downstream agent to make desired decisions. We adopt the standard calibration framework that regulates predictions to be unbiased conditional on their own value, and thus, they can reliably be interpreted at the face value by the agent. Allowing a small calibration error budget, we aim to answer the following question: what is and how to compute the optimal predictor under this calibration error budget, especially when there exists incentive misalignment between the principal and the agent? We focus on standard Lt-norm Expected Calibration Error (ECE) metric. We develop a general framework by viewing predictors as post-processed versions of perfectly calibrated predictors. Using this framework, we first characterize the structure of the optimal predictor. Specifically, when the principal's utility is event-independent and for L1-norm ECE, we show: (1) the optimal predictor is over-(resp. under-) confident for high (resp. low) true expected outcomes, while remaining perfectly calibrated in the middle; (2) the miscalibrated predictions exhibit a collinearity structure with the principal's utility function. On the algorithmic side, we provide a FPTAS for computing approximately optimal predictor for general principal utility and general Lt-norm ECE. Moreover, for the L1- and L-Infinity-norm ECE, we provide polynomial-time algorithms that compute the exact optimal predictor.
Related papers
- Quantifying the Reliability of Predictions in Detection Transformers: Object-Level Calibration and Image-Level Uncertainty [6.209833978040362]
In practice, DETR generates hundreds of predictions that far outnumber the actual number of objects present in an image.<n>This raises the question: can we trust and use all of these predictions?<n>We present empirical evidence highlighting how different predictions within the same image play distinct roles, resulting in varying reliability levels.
arXiv Detail & Related papers (2024-12-02T18:34:17Z) - Orthogonal Causal Calibration [55.28164682911196]
We prove generic upper bounds on the calibration error of any causal parameter estimate $theta$ with respect to any loss $ell$.
We use our bound to analyze the convergence of two sample splitting algorithms for causal calibration.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
Deep networks often suffer from overconfidence and misaligned predictive distributions.
We introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance between the learned predictive distribution and the empirical, conditional distribution in a dataset.
We show that using to measure congruence 1) accurately quantifies misalignment between distributions when the data generating process is known, 2) effectively scales to real-world, high dimensional image regression tasks, and 3) can be used to gauge model reliability on unseen instances.
arXiv Detail & Related papers (2024-05-20T23:30:07Z) - Towards Calibrated Deep Clustering Network [60.71776081164377]
In deep clustering, the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy.<n>We propose a novel dual head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy.<n>The proposed calibrated deep clustering model not only surpasses the state-of-the-art deep clustering methods by 5x on average in terms of expected calibration error, but also significantly outperforms them in terms of clustering accuracy.
arXiv Detail & Related papers (2024-03-04T11:23:40Z) - Does confidence calibration improve conformal prediction? [10.340903334800787]
We show that current confidence calibration methods lead to larger prediction sets in adaptive conformal prediction.<n>By investigating the role of temperature value, we observe that high-confidence predictions can enhance the efficiency of adaptive conformal prediction.<n>We propose Conformal Temperature Scaling (ConfTS), a variant of temperature scaling with a novel loss function designed to enhance the efficiency of prediction sets.
arXiv Detail & Related papers (2024-02-06T19:27:48Z) - U-Calibration: Forecasting for an Unknown Agent [29.3181385170725]
We show that optimizing forecasts for a single scoring rule cannot guarantee low regret for all possible agents.
We present a new metric for evaluating forecasts that we call U-calibration, equal to the maximal regret of the sequence of forecasts.
arXiv Detail & Related papers (2023-06-30T23:05:26Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
We introduce the framework of proper calibration errors, which relates every calibration error to a proper score.
This relationship can be used to reliably quantify the model calibration improvement.
arXiv Detail & Related papers (2022-03-15T12:46:08Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.