Adaptive Classification of Interval-Valued Time Series
- URL: http://arxiv.org/abs/2504.03318v1
- Date: Fri, 04 Apr 2025 09:52:40 GMT
- Title: Adaptive Classification of Interval-Valued Time Series
- Authors: Wan Tian, Zhongfeng Qin,
- Abstract summary: We propose an adaptive approach for interval-valued time series classification.<n>We transform interval-valued time series representations into images based on point-valued time series imaging methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the modeling and analysis of interval-valued time series have garnered significant attention in the fields of econometrics and statistics. However, the existing literature primarily focuses on regression tasks while neglecting classification aspects. In this paper, we propose an adaptive approach for interval-valued time series classification. Specifically, we represent interval-valued time series using convex combinations of upper and lower bounds of intervals and transform these representations into images based on point-valued time series imaging methods. We utilize a fine-grained image classification neural network to classify these images, to achieve the goal of classifying the original interval-valued time series. This proposed method is applicable to both univariate and multivariate interval-valued time series. On the optimization front, we treat the convex combination coefficients as learnable parameters similar to the parameters of the neural network and provide an efficient estimation method based on the alternating direction method of multipliers (ADMM). On the theoretical front, under specific conditions, we establish a margin-based multiclass generalization bound for generic CNNs composed of basic blocks involving convolution, pooling, and fully connected layers. Through simulation studies and real data applications, we validate the effectiveness of the proposed method and compare its performance against a wide range of point-valued time series classification methods.
Related papers
- Interval-Valued Time Series Classification Using $D_K$-Distance [0.0]
We introduce a classification approach that treats intervals as unified entities.
In theory, we derived a sharper excess risk bound for deep multiclassifiers based on offset Rademacher complexity.
arXiv Detail & Related papers (2025-04-07T01:31:31Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Fuzzy clustering of ordinal time series based on two novel distances
with economic applications [0.12891210250935145]
Two novel distances between ordinal time series are introduced and used to construct fuzzy clustering procedures.
The resulting clustering algorithms are computationally efficient and able to group series generated from similar processes.
Two specific applications involving economic time series illustrate the usefulness of the proposed approaches.
arXiv Detail & Related papers (2023-04-24T16:39:22Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - COSTI: a New Classifier for Sequences of Temporal Intervals [0.0]
We develop a novel method for classification operating directly on sequences of temporal intervals.
The proposed method remains at a high level of accuracy and obtains better performance while avoiding shortcomings connected to operating on transformed data.
arXiv Detail & Related papers (2022-04-28T12:55:06Z) - Elastic Product Quantization for Time Series [19.839572576189187]
We propose the use of product quantization for efficient similarity-based comparison of time series under time warping.
The proposed solution emerges as a highly efficient (both in terms of memory usage and time) replacement for elastic measures in time series applications.
arXiv Detail & Related papers (2022-01-04T09:23:06Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.