Block Toeplitz Sparse Precision Matrix Estimation for Large-Scale Interval-Valued Time Series Forecasting
- URL: http://arxiv.org/abs/2504.03322v1
- Date: Fri, 04 Apr 2025 09:57:05 GMT
- Title: Block Toeplitz Sparse Precision Matrix Estimation for Large-Scale Interval-Valued Time Series Forecasting
- Authors: Wan Tian, Zhongfeng Qin,
- Abstract summary: We propose a feature extraction procedure for interval-time prediction (ITS)<n>The proposed method can effectively obtain invariant representations of the raw data and enhance forecasting performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and forecasting interval-valued time series (ITS) have attracted considerable attention due to their growing presence in various contexts. To the best of our knowledge, there have been no efforts to model large-scale ITS. In this paper, we propose a feature extraction procedure for large-scale ITS, which involves key steps such as auto-segmentation and clustering, and feature transfer learning. This procedure can be seamlessly integrated with any suitable prediction models for forecasting purposes. Specifically, we transform the automatic segmentation and clustering of ITS into the estimation of Toeplitz sparse precision matrices and assignment set. The majorization-minimization algorithm is employed to convert this highly non-convex optimization problem into two subproblems. We derive efficient dynamic programming and alternating direction method to solve these two subproblems alternately and establish their convergence properties. By employing the Joint Recurrence Plot (JRP) to image subsequence and assigning a class label to each cluster, an image dataset is constructed. Then, an appropriate neural network is chosen to train on this image dataset and used to extract features for the next step of forecasting. Real data applications demonstrate that the proposed method can effectively obtain invariant representations of the raw data and enhance forecasting performance.
Related papers
- PSformer: Parameter-efficient Transformer with Segment Attention for Time Series Forecasting [21.033660755921737]
Time forecasting remains a critical challenge across various domains, often complicated by high-dimensional data and long-term dependencies.<n>This paper presents a novel transformer architecture for time series forecasting, incorporating two key innovations: parameter sharing (PS) and Spatial-Temporal Attention (SegAtt)
arXiv Detail & Related papers (2024-11-03T03:04:00Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - A Forward Backward Greedy approach for Sparse Multiscale Learning [0.0]
We propose a feature driven Reproducing Kernel Hilbert space (RKHS) for which the associated kernel has a weighted multiscale structure.
For generating approximations in this space, we provide a practical forward-backward algorithm that is shown to greedily construct a set of basis functions having a multiscale structure.
We analyze the performance of the approach on a variety of simulation and real data sets.
arXiv Detail & Related papers (2021-02-14T04:22:52Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
hierarchy follows from approximation spaces identified at successively finer scales.
For promoting model generalization at each scale, we also introduce a novel, projection based penalty operator across multiple dimension.
Results show the performance of the approach as a data reduction and modeling strategy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-06-09T18:32:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.