Stochastic Optimization with Optimal Importance Sampling
- URL: http://arxiv.org/abs/2504.03560v1
- Date: Fri, 04 Apr 2025 16:10:18 GMT
- Title: Stochastic Optimization with Optimal Importance Sampling
- Authors: Liviu Aolaritei, Bart P. G. Van Parys, Henry Lam, Michael I. Jordan,
- Abstract summary: We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
- Score: 49.484190237840714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Importance Sampling (IS) is a widely used variance reduction technique for enhancing the efficiency of Monte Carlo methods, particularly in rare-event simulation and related applications. Despite its power, the performance of IS is often highly sensitive to the choice of the proposal distribution and frequently requires stochastic calibration techniques. While the design and analysis of IS have been extensively studied in estimation settings, applying IS within stochastic optimization introduces a unique challenge: the decision and the IS distribution are mutually dependent, creating a circular optimization structure. This interdependence complicates both the analysis of convergence for decision iterates and the efficiency of the IS scheme. In this paper, we propose an iterative gradient-based algorithm that jointly updates the decision variable and the IS distribution without requiring time-scale separation between the two. Our method achieves the lowest possible asymptotic variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family. Furthermore, we show that these properties are preserved under linear constraints by incorporating a recent variant of Nesterov's dual averaging method.
Related papers
- Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
We introduce a novel alignment method for diffusion models from distribution optimization perspectives.<n>We first formulate the problem as a generic regularized loss minimization over probability distributions.<n>We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
arXiv Detail & Related papers (2025-02-05T07:35:15Z) - Stochastic interior-point methods for smooth conic optimization with applications [3.294420397461204]
We introduce an interior-point method for general conic optimization, along with four novel SIPM variants.
Under underdeveloped assumptions, we establish the global convergence rates of our proposed SIPMs.
Experiments on robust linear regression, multi-task relationship learning, and clustering data streams demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-12-17T15:06:44Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
We investigate the inexact variants of the scheme in both deterministic and deterministic convergence settings.
We show that by choosing the inexactness appropriately, the inexact schemes admit an $O(k-1) convergence rate in terms of the (expected) residue norm.
arXiv Detail & Related papers (2024-02-08T20:12:47Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - A unified algorithm framework for mean-variance optimization in
discounted Markov decision processes [7.510742715895749]
This paper studies the risk-averse mean-variance optimization in infinite-horizon discounted Markov decision processes (MDPs)
We introduce a pseudo mean to transform the untreatable MDP to a standard one with a redefined reward function in standard form.
We propose a unified algorithm framework with a bilevel optimization structure for the discounted mean-variance optimization.
arXiv Detail & Related papers (2022-01-15T02:19:56Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
We present a novel distributionally robust Bayesian optimization algorithm (DRBO) for zeroth-order, noisy optimization.
Our algorithm provably obtains sub-linear robust regret in various settings.
We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2020-02-20T22:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.