Multimodal Diffusion Bridge with Attention-Based SAR Fusion for Satellite Image Cloud Removal
- URL: http://arxiv.org/abs/2504.03607v1
- Date: Fri, 04 Apr 2025 17:25:49 GMT
- Title: Multimodal Diffusion Bridge with Attention-Based SAR Fusion for Satellite Image Cloud Removal
- Authors: Yuyang Hu, Suhas Lohit, Ulugbek S. Kamilov, Tim K. Marks,
- Abstract summary: Diffusion Bridges for Cloud Removal, DB-CR, bridges between cloudy and cloud-free image distributions.<n>DB-CR achieves high-fidelity results while being computationally efficient.
- Score: 15.014162404892557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has achieved some success in addressing the challenge of cloud removal in optical satellite images, by fusing with synthetic aperture radar (SAR) images. Recently, diffusion models have emerged as powerful tools for cloud removal, delivering higher-quality estimation by sampling from cloud-free distributions, compared to earlier methods. However, diffusion models initiate sampling from pure Gaussian noise, which complicates the sampling trajectory and results in suboptimal performance. Also, current methods fall short in effectively fusing SAR and optical data. To address these limitations, we propose Diffusion Bridges for Cloud Removal, DB-CR, which directly bridges between the cloudy and cloud-free image distributions. In addition, we propose a novel multimodal diffusion bridge architecture with a two-branch backbone for multimodal image restoration, incorporating an efficient backbone and dedicated cross-modality fusion blocks to effectively extract and fuse features from synthetic aperture radar (SAR) and optical images. By formulating cloud removal as a diffusion-bridge problem and leveraging this tailored architecture, DB-CR achieves high-fidelity results while being computationally efficient. We evaluated DB-CR on the SEN12MS-CR cloud-removal dataset, demonstrating that it achieves state-of-the-art results.
Related papers
- When Cloud Removal Meets Diffusion Model in Remote Sensing [4.824120664293887]
We propose DC4CR (Diffusion Control for Cloud Removal), a novel framework for cloud removal in remote sensing imagery.
Our method introduces prompt-driven control, allowing selective removal of thin and thick clouds without relying on pre-generated cloud masks.
Experiments on the RICE and CUHK-CR datasets demonstrate state-of-the-art performance, achieving superior cloud removal across diverse conditions.
arXiv Detail & Related papers (2025-04-21T00:56:57Z) - Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
This paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM)
We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR)
arXiv Detail & Related papers (2024-08-15T05:43:46Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - Diffusion Enhancement for Cloud Removal in Ultra-Resolution Remote
Sensing Imagery [48.14610248492785]
Cloud layers severely compromise the quality and effectiveness of optical remote sensing (RS) images.
Existing deep-learning (DL)-based Cloud Removal (CR) techniques encounter difficulties in accurately reconstructing the original visual authenticity and detailed semantic content of the images.
This work proposes enhancements at the data and methodology fronts to tackle this challenge.
arXiv Detail & Related papers (2024-01-25T13:14:17Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal from
Optical Satellite Images [27.02507384522271]
This paper presents a novel framework called DiffCR, which leverages conditional guided diffusion with deep convolutional networks for high-performance cloud removal for optical satellite imagery.
We introduce a decoupled encoder for conditional image feature extraction, providing a robust color representation to ensure the close similarity of appearance information between the conditional input and the synthesized output.
arXiv Detail & Related papers (2023-08-08T17:34:28Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Exploring the Potential of SAR Data for Cloud Removal in Optical
Satellite Imagery [41.40522618945897]
We propose a novel global-local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images.
The proposed algorithm can yield high quality cloud-free images and performs favorably against state-of-the-art cloud removal algorithms.
arXiv Detail & Related papers (2022-06-06T18:53:19Z) - Seeing Through Clouds in Satellite Images [14.84582204034532]
This paper presents a neural-network-based solution to recover pixels occluded by clouds in satellite images.
We leverage radio frequency (RF) signals in the ultra/super-high frequency band that penetrate clouds to help reconstruct the occluded regions in multispectral images.
arXiv Detail & Related papers (2021-06-15T20:01:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.