Timeseries Foundation Models for Mobility: A Benchmark Comparison with Traditional and Deep Learning Models
- URL: http://arxiv.org/abs/2504.03725v1
- Date: Mon, 31 Mar 2025 07:20:31 GMT
- Title: Timeseries Foundation Models for Mobility: A Benchmark Comparison with Traditional and Deep Learning Models
- Authors: Anita Graser,
- Abstract summary: This study evaluates the performance of TimeGPT compared to traditional approaches for predicting city-wide mobility timeseries.<n>Results highlight the potential of foundation models for mobility forecasting while also identifying limitations of our experiments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crowd and flow predictions have been extensively studied in mobility data science. Traditional forecasting methods have relied on statistical models such as ARIMA, later supplemented by deep learning approaches like ST-ResNet. More recently, foundation models for time series forecasting, such as TimeGPT, Chronos, and LagLlama, have emerged. A key advantage of these models is their ability to generate zero-shot predictions, allowing them to be applied directly to new tasks without retraining. This study evaluates the performance of TimeGPT compared to traditional approaches for predicting city-wide mobility timeseries using two bike-sharing datasets from New York City and Vienna, Austria. Model performance is assessed across short (1-hour), medium (12-hour), and long-term (24-hour) forecasting horizons. The results highlight the potential of foundation models for mobility forecasting while also identifying limitations of our experiments.
Related papers
- Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications [0.0]
Time series forecasting is essential for operational intelligence in the hospitality industry.
This study evaluates the performance of statistical, machine learning (ML), deep learning, and foundation models in forecasting hourly sales over a 14-day horizon.
arXiv Detail & Related papers (2025-02-05T17:30:31Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - TimeGPT-1 [1.2289361708127877]
We introduce TimeGPT, the first foundation model for time series, capable of generating accurate predictions for diverse datasets not seen during training.
We evaluate our pre-trained model against established statistical, machine learning, and deep learning methods, demonstrating that TimeGPT zero-shot inference excels in performance, efficiency, and simplicity.
arXiv Detail & Related papers (2023-10-05T15:14:00Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Evaluation of Time-Series Forecasting Models for Chickenpox Cases
Estimation in Hungary [0.0]
We use time-series forecasting techniques to model and predict the future incidence of chickenpox.
We implement and simulate multiple models and data preprocessing techniques on a Hungary-collected dataset.
arXiv Detail & Related papers (2022-09-28T14:27:07Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series.
We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage.
arXiv Detail & Related papers (2021-08-19T14:44:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.