A Benchmark for Scalable Oversight Protocols
- URL: http://arxiv.org/abs/2504.03731v1
- Date: Mon, 31 Mar 2025 23:32:59 GMT
- Title: A Benchmark for Scalable Oversight Protocols
- Authors: Abhimanyu Pallavi Sudhir, Jackson Kaunismaa, Arjun Panickssery,
- Abstract summary: We introduce a principled framework for evaluating human feedback mechanisms based on our agent score difference (ASD) metric.<n>We supply a Python package to facilitate rapid and competitive evaluation of scalable oversight protocols.
- Score: 2.048226951354646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI agents surpass human capabilities, scalable oversight -- the problem of effectively supplying human feedback to potentially superhuman AI models -- becomes increasingly critical to ensure alignment. While numerous scalable oversight protocols have been proposed, they lack a systematic empirical framework to evaluate and compare them. While recent works have tried to empirically study scalable oversight protocols -- particularly Debate -- we argue that the experiments they conduct are not generalizable to other protocols. We introduce the scalable oversight benchmark, a principled framework for evaluating human feedback mechanisms based on our agent score difference (ASD) metric, a measure of how effectively a mechanism advantages truth-telling over deception. We supply a Python package to facilitate rapid and competitive evaluation of scalable oversight protocols on our benchmark, and conduct a demonstrative experiment benchmarking Debate.
Related papers
- Pairwise or Pointwise? Evaluating Feedback Protocols for Bias in LLM-Based Evaluation [57.380464382910375]
We show that the choice of feedback protocol can significantly affect evaluation reliability and induce systematic biases.
In particular, we show that pairwise evaluation protocols are more vulnerable to distracted evaluation.
arXiv Detail & Related papers (2025-04-20T19:05:59Z) - On Benchmarking Human-Like Intelligence in Machines [77.55118048492021]
We argue that current AI evaluation paradigms are insufficient for assessing human-like cognitive capabilities.<n>We identify a set of key shortcomings: a lack of human-validated labels, inadequate representation of human response variability and uncertainty, and reliance on simplified and ecologically-invalid tasks.
arXiv Detail & Related papers (2025-02-27T20:21:36Z) - Objective Metrics for Human-Subjects Evaluation in Explainable Reinforcement Learning [0.47355466227925036]
Explanation is a fundamentally human process. Understanding the goal and audience of the explanation is vital.
Existing work on explainable reinforcement learning (XRL) routinely does not consult humans in their evaluations.
This paper calls on researchers to use objective human metrics for explanation evaluations based on observable and actionable behaviour.
arXiv Detail & Related papers (2025-01-31T16:12:23Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - Games for AI Control: Models of Safety Evaluations of AI Deployment Protocols [52.40622903199512]
This paper introduces AI-Control Games, a formal decision-making model of the red-teaming exercise as a multi-objective, partially observable game.
We apply our formalism to model, evaluate and synthesise protocols for deploying untrusted language models as programming assistants.
arXiv Detail & Related papers (2024-09-12T12:30:07Z) - Rethinking Affect Analysis: A Protocol for Ensuring Fairness and Consistency [24.737468736951374]
We propose a unified protocol for database partitioning that ensures fairness and comparability.
We provide detailed demographic annotations (in terms of race, gender and age), evaluation metrics, and a common framework for expression recognition.
We also rerun the methods with the new protocol and introduce a new leaderboards to encourage future research in affect recognition with a fairer comparison.
arXiv Detail & Related papers (2024-08-04T23:21:46Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
Existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale.
We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units.
We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems.
arXiv Detail & Related papers (2022-12-15T17:26:05Z) - Counterfactually Evaluating Explanations in Recommender Systems [14.938252589829673]
We propose an offline evaluation method that can be computed without human involvement.
We show that, compared to conventional methods, our method can produce evaluation scores more correlated with the real human judgments.
arXiv Detail & Related papers (2022-03-02T18:55:29Z) - On the Interaction of Belief Bias and Explanations [4.211128681972148]
We provide an overview of belief bias, its role in human evaluation, and ideas for NLP practitioners on how to account for it.
We show that conclusions about the highest performing methods change when introducing such controls, pointing to the importance of accounting for belief bias in evaluation.
arXiv Detail & Related papers (2021-06-29T12:49:42Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.