PIORF: Physics-Informed Ollivier-Ricci Flow for Long-Range Interactions in Mesh Graph Neural Networks
- URL: http://arxiv.org/abs/2504.04052v1
- Date: Sat, 05 Apr 2025 04:14:05 GMT
- Title: PIORF: Physics-Informed Ollivier-Ricci Flow for Long-Range Interactions in Mesh Graph Neural Networks
- Authors: Youn-Yeol Yu, Jeongwhan Choi, Jaehyeon Park, Kookjin Lee, Noseong Park,
- Abstract summary: We propose Physics-Informed Ollivier-Ricci Flow (PIORF), a novel rewiring method that combines physical correlations with graph topology.<n>We show that PIORF consistently outperforms baseline models and existing rewiring methods, achieving up to 26.2 improvement.
- Score: 23.97389618896843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, data-driven simulators based on graph neural networks have gained attention in modeling physical systems on unstructured meshes. However, they struggle with long-range dependencies in fluid flows, particularly in refined mesh regions. This challenge, known as the 'over-squashing' problem, hinders information propagation. While existing graph rewiring methods address this issue to some extent, they only consider graph topology, overlooking the underlying physical phenomena. We propose Physics-Informed Ollivier-Ricci Flow (PIORF), a novel rewiring method that combines physical correlations with graph topology. PIORF uses Ollivier-Ricci curvature (ORC) to identify bottleneck regions and connects these areas with nodes in high-velocity gradient nodes, enabling long-range interactions and mitigating over-squashing. Our approach is computationally efficient in rewiring edges and can scale to larger simulations. Experimental results on 3 fluid dynamics benchmark datasets show that PIORF consistently outperforms baseline models and existing rewiring methods, achieving up to 26.2 improvement.
Related papers
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
Graph Neural Networks (GNNs) are designed to process graph-structured data through neighborhood aggregations in the message passing process.<n>Message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing.<n>We propose a mechanism called emph information flow control to address over-smoothing and over-squashing with linear computational overhead.<n>We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance
arXiv Detail & Related papers (2025-01-10T14:34:20Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - A Finite Element-Inspired Hypergraph Neural Network: Application to
Fluid Dynamics Simulations [4.984601297028257]
An emerging trend in deep learning research focuses on the applications of graph neural networks (GNNs) for continuum mechanics simulations.
We present a method to construct a hypergraph by connecting the nodes by elements rather than edges.
We term this method a finite element-inspired hypergraph neural network, in short FEIH($phi$)-GNN.
arXiv Detail & Related papers (2022-12-30T04:10:01Z) - Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci
Curvature [11.592567773739411]
Our study reveals the key connection between the local graph geometry and the occurrence of over-smoothing and over-squashing.
We propose the Batch Ollivier-Ricci Flow, a novel rewiring algorithm capable of simultaneously addressing both over-smoothing and over-squashing.
arXiv Detail & Related papers (2022-11-28T21:21:31Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Understanding over-squashing and bottlenecks on graphs via curvature [17.359098638324546]
Over-squashing is a phenomenon where the number of $k$-hop neighbors grows rapidly with $k$.
We introduce a new edge-based curvature and prove that negatively curved edges are responsible for over-squashing.
We also propose and experimentally test a curvature-based rewiring method to alleviate the over-squashing.
arXiv Detail & Related papers (2021-11-29T13:27:56Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.