VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
- URL: http://arxiv.org/abs/2504.04060v2
- Date: Tue, 22 Apr 2025 07:59:31 GMT
- Title: VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
- Authors: Yuhao Wang, Heyang Liu, Ziyang Cheng, Ronghua Wu, Qunshan Gu, Yanfeng Wang, Yu Wang,
- Abstract summary: Speech large language models (LLMs) have emerged as a prominent research focus in speech processing.<n>We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework.<n>Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs.
- Score: 26.34810950257782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
Related papers
- Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model [76.06585781346601]
Speech language models (Speech LMs) enable end-to-end speech-text modelling within a single model.<n>The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality.
arXiv Detail & Related papers (2025-06-04T23:53:49Z) - TESU-LLM: Training Speech-LLMs Without Speech via Unified Encoder Alignment [15.899112804399193]
We present textbfTESU-LLM, a novel framework that enables training speech-capable language models using only text data.<n>Our key insight is to leverage a unified encoder that maps semantically equivalent text and speech inputs to a shared latent space.<n>Despite being trained exclusively on text, TESU-LLM achieves strong performance on various speech-related benchmarks.
arXiv Detail & Related papers (2025-06-01T09:27:55Z) - L-MTP: Leap Multi-Token Prediction Beyond Adjacent Context for Large Language Models [69.1271366892683]
We propose leap multi-token prediction(L-MTP), an innovative token prediction method.<n>Unlike conventional MTP, L-MTP strategically skips over intermediate tokens, predicting non-sequential ones in a single forward pass.<n>We theoretically demonstrate the benefit of L-MTP in improving inference efficiency.
arXiv Detail & Related papers (2025-05-23T05:59:46Z) - VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model [70.25062476543091]
VITA-Audio is an end-to-end large speech model with fast audio-text token generation.<n>MCTP module efficiently generates multiple audio tokens within a single model forward pass.<n>Four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality.
arXiv Detail & Related papers (2025-05-06T17:59:53Z) - LLMVoX: Autoregressive Streaming Text-to-Speech Model for Any LLM [35.443850239910866]
We propose a lightweight, autoregressive streaming TTS system that generates high-quality speech with low latency.<n>Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency and UTMOS score.
arXiv Detail & Related papers (2025-03-06T18:59:38Z) - Zero-resource Speech Translation and Recognition with LLMs [38.11535502039386]
We propose to leverage a multilingual Large Language Model (LLM) to perform ST and ASR in languages for which the model has never seen paired audio-text data.<n>We achieve this by using a pre-trained multilingual speech encoder, a multilingual LLM, and a lightweight adaptation module that maps the audio representations to the token embedding space of the LLM.
arXiv Detail & Related papers (2024-12-24T17:37:11Z) - CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models [74.80386066714229]
We present an improved streaming speech synthesis model, CosyVoice 2.
Specifically, we introduce finite-scalar quantization to improve codebook utilization of speech tokens.
We develop a chunk-aware causal flow matching model to support various synthesis scenarios.
arXiv Detail & Related papers (2024-12-13T12:59:39Z) - Get Large Language Models Ready to Speak: A Late-fusion Approach for Speech Generation [14.746190461312036]
Large language models (LLMs) have revolutionized natural language processing (NLP)
We introduce a text-to-speech (TTS) system powered by a fine-tuned Llama model, named TTS-Llama, that achieves state-of-the-art speech synthesis performance.
We further propose MoLE-Llama, a text-and-speech multimodal LLM developed through purely late-fusion parameter-efficient fine-tuning (PEFT) and a mixture-of-expert architecture.
arXiv Detail & Related papers (2024-10-27T04:28:57Z) - VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
We propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the large language models (LLMs) backbone.
Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks.
arXiv Detail & Related papers (2024-10-23T00:36:06Z) - Large Language Models are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.<n>We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.<n>We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.79% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation [56.913182262166316]
Chain-of-Information Generation (CoIG) is a method for decoupling semantic and perceptual information in large-scale speech generation.
SpeechGPT-Gen is efficient in semantic and perceptual information modeling.
It markedly excels in zero-shot text-to-speech, zero-shot voice conversion, and speech-to-speech dialogue.
arXiv Detail & Related papers (2024-01-24T15:25:01Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision.
We conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E.
We compare three integration methods between LLMs and speech models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder
arXiv Detail & Related papers (2023-12-30T14:20:04Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Speak While You Think: Streaming Speech Synthesis During Text Generation [13.964169328257233]
Large Language Models (LLMs) demonstrate impressive capabilities, yet interaction with these models is mostly facilitated through text.
We propose LLM2Speech, an architecture to synthesize speech while text is being generated by an LLM which yields significant latency reduction.
arXiv Detail & Related papers (2023-09-20T11:00:15Z) - SpeechGen: Unlocking the Generative Power of Speech Language Models with
Prompts [108.04306136086807]
We present research that explores the application of prompt tuning to stimulate speech LMs for various generation tasks, within a unified framework called SpeechGen.
The proposed unified framework holds great promise for efficiency and effectiveness, particularly with the imminent arrival of advanced speech LMs.
arXiv Detail & Related papers (2023-06-03T22:35:27Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.