STEP: Staged Parameter-Efficient Pre-training for Large Language Models
- URL: http://arxiv.org/abs/2504.04151v1
- Date: Sat, 05 Apr 2025 12:07:08 GMT
- Title: STEP: Staged Parameter-Efficient Pre-training for Large Language Models
- Authors: Kazuki Yano, Takumi Ito, Jun Suzuki,
- Abstract summary: Pre-training large language models (LLMs) faces significant memory challenges due to the large size of model parameters.<n>We introduce STaged parameter-Efficient Pre-training (STEP), which integrates parameter-efficient tuning techniques with model growth.
- Score: 16.77087225406202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-training large language models (LLMs) faces significant memory challenges due to the large size of model parameters. We introduce STaged parameter-Efficient Pre-training (STEP), which integrates parameter-efficient tuning techniques with model growth. We conduct experiments on pre-training LLMs of various sizes and demonstrate that STEP achieves up to a 53.9% reduction in maximum memory requirements compared to vanilla pre-training while maintaining equivalent performance. Furthermore, we show that the model by STEP performs comparably to vanilla pre-trained models on downstream tasks after instruction tuning.
Related papers
- Overtrained Language Models Are Harder to Fine-Tune [64.44743256512237]
Large language models are pre-trained on ever-growing token budgets.<n>We show that extended pre-training can make models harder to fine-tune, leading to degraded final performance.
arXiv Detail & Related papers (2025-03-24T23:11:56Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - Low-rank Attention Side-Tuning for Parameter-Efficient Fine-Tuning [19.17362588650503]
Low-rank Attention Side-Tuning (LAST) trains a side-network composed of only low-rank self-attention modules.
We show LAST can be highly parallel across multiple optimization objectives, making it very efficient in downstream task adaptation.
arXiv Detail & Related papers (2024-02-06T14:03:15Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model.
We propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO)
The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks.
arXiv Detail & Related papers (2022-04-13T21:39:15Z) - DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and
Quantization [75.72231742114951]
Large-scale pre-trained sequence-to-sequence models like BART and T5 achieve state-of-the-art performance on many generative NLP tasks.
These models pose a great challenge in resource-constrained scenarios owing to their large memory requirements and high latency.
We propose to jointly distill and quantize the model, where knowledge is transferred from the full-precision teacher model to the quantized and distilled low-precision student model.
arXiv Detail & Related papers (2022-03-21T18:04:25Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
We re-evaluate the standard practice of sharing weights between input and output embeddings in pre-trained language models.
We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation.
We are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.
arXiv Detail & Related papers (2020-10-24T07:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.