Investigating and Mitigating Stereotype-aware Unfairness in LLM-based Recommendations
- URL: http://arxiv.org/abs/2504.04199v2
- Date: Tue, 29 Apr 2025 07:13:09 GMT
- Title: Investigating and Mitigating Stereotype-aware Unfairness in LLM-based Recommendations
- Authors: Zihuai Zhao, Wenqi Fan, Yao Wu, Qing Li,
- Abstract summary: Large Language Models (LLMs) have demonstrated unprecedented language understanding and reasoning capabilities.<n>Recent studies have revealed that LLMs are likely to inherit stereotypes that are embedded ubiquitously in word embeddings.<n>This study reveals a new variant of fairness between stereotype groups containing both users and items, to quantify discrimination against stereotypes in LLM-RS.
- Score: 18.862841015556995
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated unprecedented language understanding and reasoning capabilities to capture diverse user preferences and advance personalized recommendations. Despite the growing interest in LLM-based recommendations, unique challenges are brought to the trustworthiness of LLM-based recommender systems (LLM-RS). Compared to unique user/item representations in conventional recommender systems, users and items share the textual representation (e.g., word embeddings) in LLM-based recommendations. Recent studies have revealed that LLMs are likely to inherit stereotypes that are embedded ubiquitously in word embeddings, due to their training on large-scale uncurated datasets. This leads to LLM-RS exhibiting stereotypical linguistic associations between users and items, causing a form of two-sided (i.e., user-to-item) recommendation fairness. However, there remains a lack of studies investigating the unfairness of LLM-RS due to intrinsic stereotypes, which can simultaneously involve user and item groups. To bridge this gap, this study reveals a new variant of fairness between stereotype groups containing both users and items, to quantify discrimination against stereotypes in LLM-RS. Moreover, in this paper, to mitigate stereotype-aware unfairness in textual user and item representations, we propose a novel framework named Mixture-of-Stereotypes (MoS). In particular, an insightful stereotype-wise routing strategy over multiple stereotype-relevant experts is designed, aiming to learn unbiased representations against different stereotypes in LLM-RS. Extensive experiments are conducted to analyze the influence of stereotype-aware fairness in LLM-RS and the effectiveness of our proposed methods, which consistently outperform competitive benchmarks under various fairness settings.
Related papers
- Evaluating how LLM annotations represent diverse views on contentious topics [3.405231040967506]
We show how generative large language models (LLMs) represent diverse viewpoints on contentious labeling tasks.
Our findings suggest that when using LLMs to annotate data, under-representing the views of particular groups is not a substantial concern.
arXiv Detail & Related papers (2025-03-29T22:53:15Z) - Bayesian Teaching Enables Probabilistic Reasoning in Large Language Models [50.16340812031201]
We show that large language models (LLMs) do not update their beliefs as expected from the Bayesian framework.<n>We teach the LLMs to reason in a Bayesian manner by training them to mimic the predictions of an optimal Bayesian model.
arXiv Detail & Related papers (2025-03-21T20:13:04Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities.
However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender.
This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC) and ii) Proposing an Anti-Stereotype Debiasing strategy (ASD)
arXiv Detail & Related papers (2024-08-13T02:08:32Z) - Fairness in Large Language Models in Three Hours [2.443957114877221]
This tutorial provides a systematic overview of recent advances in the literature concerning large language models.
The concept of fairness in LLMs is then explored, summarizing the strategies for evaluating bias and the algorithms designed to promote fairness.
arXiv Detail & Related papers (2024-08-02T03:44:14Z) - How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies [0.0]
Commercial model development has focused efforts on'safety' training concerning legal liabilities at the expense of social impact evaluation.
This mimics a similar trend which we could observe for search engine autocompletion some years prior.
We present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs.
arXiv Detail & Related papers (2024-07-16T14:04:35Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - A Normative Framework for Benchmarking Consumer Fairness in Large Language Model Recommender System [9.470545149911072]
This paper proposes a normative framework to benchmark consumer fairness in LLM-powered recommender systems.
We argue that this gap can lead to arbitrary conclusions about fairness.
Experiments on the MovieLens dataset on consumer fairness reveal fairness deviations in age-based recommendations.
arXiv Detail & Related papers (2024-05-03T16:25:27Z) - Fairness in Large Language Models: A Taxonomic Survey [2.669847575321326]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.<n>Despite their promising performance in numerous real-world applications, most of these algorithms lack fairness considerations.
arXiv Detail & Related papers (2024-03-31T22:22:53Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - A Group Fairness Lens for Large Language Models [34.0579082699443]
Large language models can perpetuate biases and unfairness when deployed in social media contexts.
We propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups.
We pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective.
arXiv Detail & Related papers (2023-12-24T13:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.