Task load dependent decision referrals for joint binary classification in human-automation teams
- URL: http://arxiv.org/abs/2504.04248v1
- Date: Sat, 05 Apr 2025 19:09:04 GMT
- Title: Task load dependent decision referrals for joint binary classification in human-automation teams
- Authors: Kesav Kaza, Jerome Le Ny, Aditya Mahajan,
- Abstract summary: We consider the problem of optimal decision referrals in human-automation teams performing binary classification tasks.<n>We provide a ranking scheme and a policy to determine the optimal set of tasks for referral.<n>Results show statistically significant gains for the proposed optimal referral policy over a blind policy.
- Score: 5.004501184476518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of optimal decision referrals in human-automation teams performing binary classification tasks. The automation, which includes a pre-trained classifier, observes data for a batch of independent tasks, analyzes them, and may refer a subset of tasks to a human operator for fresh and final analysis. Our key modeling assumption is that human performance degrades with task load. We model the problem of choosing which tasks to refer as a stochastic optimization problem and show that, for a given task load, it is optimal to myopically refer tasks that yield the largest reduction in expected cost, conditional on the observed data. This provides a ranking scheme and a policy to determine the optimal set of tasks for referral. We evaluate this policy against a baseline through an experimental study with human participants. Using a radar screen simulator, participants made binary target classification decisions under time constraint. They were guided by a decision rule provided to them, but were still prone to errors under time pressure. An initial experiment estimated human performance model parameters, while a second experiment compared two referral policies. Results show statistically significant gains for the proposed optimal referral policy over a blind policy that determines referrals using the automation and human-performance models but not based on the observed data.
Related papers
- Maximizing Signal in Human-Model Preference Alignment [0.0]
This paper argues that in cases in which end users need to agree with the decisions made by ML models, models should be trained and evaluated on data that represent their preferences.
We show that noise in labeling disagreement can be minimized by adhering to proven methodological best practices.
arXiv Detail & Related papers (2025-03-06T19:10:57Z) - CritiQ: Mining Data Quality Criteria from Human Preferences [70.35346554179036]
We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality.<n>CritiQ Flow employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments.<n>We demonstrate the effectiveness of our method in the code, math, and logic domains.
arXiv Detail & Related papers (2025-02-26T16:33:41Z) - SureMap: Simultaneous Mean Estimation for Single-Task and Multi-Task Disaggregated Evaluation [75.56845750400116]
Disaggregated evaluation -- estimation of performance of a machine learning model on different subpopulations -- is a core task when assessing performance and group-fairness of AI systems.
We develop SureMap that has high estimation accuracy for both multi-task and single-task disaggregated evaluations of blackbox models.
Our method combines maximum a posteriori (MAP) estimation using a well-chosen prior together with cross-validation-free tuning via Stein's unbiased risk estimate (SURE)
arXiv Detail & Related papers (2024-11-14T17:53:35Z) - Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
This work investigates cognitive bias identification in high-stake decision making process by human experts.
We propose bias-aware AI-augmented workflow that surpass human judgment.
In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models.
arXiv Detail & Related papers (2024-11-13T10:42:11Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Automated Off-Policy Estimator Selection via Supervised Learning [7.476028372444458]
Off-Policy Evaluation (OPE) problem consists of evaluating the performance of counterfactual policies with data collected by another one.
To solve the OPE problem, we resort to estimators, which aim to estimate in the most accurate way possible the performance that the counterfactual policies would have had if they were deployed in place of the logging policy.
We propose an automated data-driven OPE estimator selection method based on supervised learning.
arXiv Detail & Related papers (2024-06-26T02:34:48Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - How to Estimate Model Transferability of Pre-Trained Speech Models? [84.11085139766108]
"Score-based assessment" framework for estimating transferability of pre-trained speech models.
We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates.
Our framework efficiently computes transferability scores without actual fine-tuning of candidate models or layers.
arXiv Detail & Related papers (2023-06-01T04:52:26Z) - Designing Closed-Loop Models for Task Allocation [36.04165658325371]
We exploit weak prior information on human-task similarity to bootstrap model training.
We show that the use of such a weak prior can improve task allocation accuracy, even when human decision-makers are fallible and biased.
arXiv Detail & Related papers (2023-05-31T13:57:56Z) - Investigations of Performance and Bias in Human-AI Teamwork in Hiring [30.046502708053097]
In AI-assisted decision-making, effective hybrid teamwork (human-AI) is not solely dependent on AI performance alone.
We investigate how both a model's predictive performance and bias may transfer to humans in a recommendation-aided decision task.
arXiv Detail & Related papers (2022-02-21T17:58:07Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.