LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators
- URL: http://arxiv.org/abs/2504.04260v1
- Date: Sat, 05 Apr 2025 19:35:04 GMT
- Title: LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators
- Authors: Marimuthu Kalimuthu, David Holzmüller, Mathias Niepert,
- Abstract summary: High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
- Score: 20.77877474840923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling high-frequency information is a critical challenge in scientific machine learning. For instance, fully turbulent flow simulations of Navier-Stokes equations at Reynolds numbers 3500 and above can generate high-frequency signals due to swirling fluid motions caused by eddies and vortices. Faithfully modeling such signals using neural networks depends on accurately reconstructing moderate to high frequencies. However, it has been well known that deep neural nets exhibit the so-called spectral bias toward learning low-frequency components. Meanwhile, Fourier Neural Operators (FNOs) have emerged as a popular class of data-driven models in recent years for solving Partial Differential Equations (PDEs) and for surrogate modeling in general. Although impressive results have been achieved on several PDE benchmark problems, FNOs often perform poorly in learning non-dominant frequencies characterized by local features. This limitation stems from the spectral bias inherent in neural networks and the explicit exclusion of high-frequency modes in FNOs and their variants. Therefore, to mitigate these issues and improve FNO's spectral learning capabilities to represent a broad range of frequency components, we propose two key architectural enhancements: (i) a parallel branch performing local spectral convolutions (ii) a high-frequency propagation module. Moreover, we propose a novel frequency-sensitive loss term based on radially binned spectral errors. This introduction of a parallel branch for local convolutions reduces number of trainable parameters by up to 50% while achieving the accuracy of baseline FNO that relies solely on global convolutions. Experiments on three challenging PDE problems in fluid mechanics and biological pattern formation, and the qualitative and spectral analysis of predictions show the effectiveness of our method over the state-of-the-art neural operator baselines.
Related papers
- Mitigating Spectral Bias in Neural Operators via High-Frequency Scaling for Physical Systems [1.6874375111244329]
We introduce a new approach named high-frequency scaling (HFS) to mitigate spectral bias in convolutional-based neural operators.
We demonstrate a higher prediction accuracy by mitigating spectral bias in single and two-phase flow problems.
arXiv Detail & Related papers (2025-03-17T20:08:47Z) - On the study of frequency control and spectral bias in Wavelet-Based Kolmogorov Arnold networks: A path to physics-informed KANs [0.35998666903987897]
Spectral bias, the tendency of neural networks to prioritize learning low-frequency components of functions during the initial training stages, poses a significant challenge when approximating solutions with high-frequency details.<n>We analyze the eigenvalues of the neural tangent kernel (NTK) of Wavelet Kolmogorov Arnold Networks (Wav-KANs) to enhance their ability to converge on high-frequency components.
arXiv Detail & Related papers (2025-02-01T02:35:12Z) - Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows [6.961408873053586]
Recent in operator-type neural networks have shown promising results in approximating Partial Differential Equations (PDEs)<n>These neural networks entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines.
arXiv Detail & Related papers (2024-05-27T14:33:06Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards simpler'' functions.
We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets.
We propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies.
arXiv Detail & Related papers (2023-05-16T20:06:01Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.