Data Scaling Laws for End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2504.04338v1
- Date: Sun, 06 Apr 2025 03:23:48 GMT
- Title: Data Scaling Laws for End-to-End Autonomous Driving
- Authors: Alexander Naumann, Xunjiang Gu, Tolga Dimlioglu, Mariusz Bojarski, Alperen Degirmenci, Alexander Popov, Devansh Bisla, Marco Pavone, Urs Müller, Boris Ivanovic,
- Abstract summary: We evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours.<n>Specifically, we investigate how much additional training data is needed to achieve a target performance gain.
- Score: 83.85463296830743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicle (AV) stacks have traditionally relied on decomposed approaches, with separate modules handling perception, prediction, and planning. However, this design introduces information loss during inter-module communication, increases computational overhead, and can lead to compounding errors. To address these challenges, recent works have proposed architectures that integrate all components into an end-to-end differentiable model, enabling holistic system optimization. This shift emphasizes data engineering over software integration, offering the potential to enhance system performance by simply scaling up training resources. In this work, we evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours with both open-loop metrics and closed-loop simulations. Specifically, we investigate how much additional training data is needed to achieve a target performance gain, e.g., a 5% improvement in motion prediction accuracy. By understanding the relationship between model performance and training dataset size, we aim to provide insights for data-driven decision-making in autonomous driving development.
Related papers
- FRTP: Federating Route Search Records to Enhance Long-term Traffic Prediction [1.5728609542259502]
We propose a federated architecture capable of learning from raw data with varying features and time granularities or lengths.
Our experiments focus on federating route search records and begin by processing raw data within the model framework.
The accuracy of the proposed model is demonstrated through evaluations using diverse learning patterns and parameter settings.
arXiv Detail & Related papers (2024-12-23T08:14:20Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
We propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model.
By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data.
arXiv Detail & Related papers (2024-08-07T05:48:05Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - DiffStack: A Differentiable and Modular Control Stack for Autonomous
Vehicles [75.43355868143209]
We present DiffStack, a differentiable and modular stack for prediction, planning, and control.
Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics.
arXiv Detail & Related papers (2022-12-13T09:05:21Z) - Building Resilience to Out-of-Distribution Visual Data via Input
Optimization and Model Finetuning [13.804184845195296]
We propose a preprocessing model that learns to optimise input data for a specific target vision model.
We investigate several out-of-distribution scenarios in the context of semantic segmentation for autonomous vehicles.
We demonstrate that our approach can enable performance on such data comparable to that of a finetuned model.
arXiv Detail & Related papers (2022-11-29T14:06:35Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
Human trajectory forecasting is a key component of autonomous vehicles, social-aware robots and video-surveillance applications.
We propose a lightweight attention-based recurrent backbone that acts solely on past observed positions.
We employ a common goal module, based on a U-Net architecture, which additionally extracts semantic information to predict scene-compliant destinations.
arXiv Detail & Related papers (2022-04-25T11:12:37Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.