Saliency-driven Dynamic Token Pruning for Large Language Models
- URL: http://arxiv.org/abs/2504.04514v2
- Date: Wed, 09 Apr 2025 14:36:19 GMT
- Title: Saliency-driven Dynamic Token Pruning for Large Language Models
- Authors: Yao Tao, Yehui Tang, Yun Wang, Mingjian Zhu, Hailin Hu, Yunhe Wang,
- Abstract summary: Saliency-driven Dynamic Token Pruning (SDTP)<n>A lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state.<n>A ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score.
- Score: 32.903622070917194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent success of large language models (LLMs), LLMs are particularly challenging in long-sequence inference scenarios due to the quadratic computational complexity of the attention mechanism. Inspired by the interpretability theory of feature attribution in neural network models, we observe that not all tokens have the same contribution. Based on this observation, we propose a novel token pruning framework, namely Saliency-driven Dynamic Token Pruning (SDTP), to gradually and dynamically prune redundant tokens based on the input context. Specifically, a lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state, which is added to different layers of the LLM to hierarchically prune redundant tokens. Furthermore, a ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score. Extensive experiments have shown that our framework is generalizable to various models and datasets. By hierarchically pruning 65\% of the input tokens, our method greatly reduces 33\% $\sim$ 47\% FLOPs and achieves speedup up to 1.75$\times$ during inference, while maintaining comparable performance. We further demonstrate that SDTP can be combined with KV cache compression method for further compression.
Related papers
- Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation [63.89280381800457]
We propose TokenBridge, which maintains the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens.<n>We introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism.<n>Our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction.
arXiv Detail & Related papers (2025-03-20T17:59:59Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.<n>Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - RSQ: Learning from Important Tokens Leads to Better Quantized LLMs [65.5558181902098]
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining.<n>We propose RSQ (Rotate, Scale, then Quantize), which applies rotations to the model to mitigate outliers.<n>We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families.
arXiv Detail & Related papers (2025-03-03T18:46:33Z) - Dynamic Token Reduction during Generation for Vision Language Models [11.376359442815986]
We introduce a dynamic pruning strategy tailored for Vision-Language Models (VLMs)<n>Our approach enables flexible adjustment of pruning rates based on the attention distribution.<n>Our experimental results demonstrate that our method not only reduces computational demands but also maintains the quality of responses.
arXiv Detail & Related papers (2025-01-24T03:20:37Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.
We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles [23.134664392314264]
Tokenization is associated with many poorly understood shortcomings in language models (LM)
This work studies how tokenization impacts model performance by analyzing and comparing models with their byte-level counterparts.
We develop a next-byte sampling algorithm that eliminates tokenization bias without requiring further training or optimization.
arXiv Detail & Related papers (2024-10-11T23:30:42Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
We propose Hierarchically Pruned Attention (HiP) to increase context length in large language models.<n>HiP reduces the time complexity of the attention mechanism to $O(T log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length.<n>We show that HiP significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation.
arXiv Detail & Related papers (2024-06-14T08:32:45Z) - MADTP: Multimodal Alignment-Guided Dynamic Token Pruning for
Accelerating Vision-Language Transformer [66.71930982549028]
Vision-Language Transformers (VLTs) have shown great success recently, but are accompanied by heavy computation costs.
We propose a novel framework named Multimodal Alignment-Guided Dynamic Token Pruning (MADTP) for accelerating various VLTs.
arXiv Detail & Related papers (2024-03-05T14:13:50Z) - Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers [29.319666323947708]
We present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness.
Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context.
Our reference implementation achieves up to $2times$ increase in inference throughput and even greater memory savings.
arXiv Detail & Related papers (2023-05-25T07:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.