Classification of ADHD and Healthy Children Using EEG Based Multi-Band Spatial Features Enhancement
- URL: http://arxiv.org/abs/2504.04664v1
- Date: Mon, 07 Apr 2025 01:19:14 GMT
- Title: Classification of ADHD and Healthy Children Using EEG Based Multi-Band Spatial Features Enhancement
- Authors: Md Bayazid Hossain, Md Anwarul Islam Himel, Md Abdur Rahim, Shabbir Mahmood, Abu Saleh Musa Miah, Jungpil Shin,
- Abstract summary: We propose a method for classifying ADHD and healthy children using EEG data from the benchmark dataset.<n>EEG signals have emerged as a non-invasive and efficient tool for ADHD detection due to their high temporal resolution and ability to capture neural dynamics.
- Score: 1.5236380958983642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder in children, characterized by difficulties in attention, hyperactivity, and impulsivity. Early and accurate diagnosis of ADHD is critical for effective intervention and management. Electroencephalogram (EEG) signals have emerged as a non-invasive and efficient tool for ADHD detection due to their high temporal resolution and ability to capture neural dynamics. In this study, we propose a method for classifying ADHD and healthy children using EEG data from the benchmark dataset. There were 61 children with ADHD and 60 healthy children, both boys and girls, aged 7 to 12. The EEG signals, recorded from 19 channels, were processed to extract Power Spectral Density (PSD) and Spectral Entropy (SE) features across five frequency bands, resulting in a comprehensive 190-dimensional feature set. To evaluate the classification performance, a Support Vector Machine (SVM) with the RBF kernel demonstrated the best performance with a mean cross-validation accuracy of 99.2\% and a standard deviation of 0.0079, indicating high robustness and precision. These results highlight the potential of spatial features in conjunction with machine learning for accurately classifying ADHD using EEG data. This work contributes to developing non-invasive, data-driven tools for early diagnosis and assessment of ADHD in children.
Related papers
- An ADHD Diagnostic Interface Based on EEG Spectrograms and Deep Learning Techniques [7.43546591259295]
This paper introduces an innovative approach to Attention-deficit/hyperactivity disorder (ADHD) diagnosis by employing deep learning (DL) techniques on electroencephalography (EEG) signals.<n>By utilizing a publicly available EEG dataset and converting the signals into spectrograms, a Resnet-18 convolutional neural network (CNN) architecture was used to extract features for ADHD classification.<n>The model achieved a high precision, recall, and an overall F1 score of 0.9.
arXiv Detail & Related papers (2024-12-03T18:59:35Z) - Transparent but Powerful: Explainability, Accuracy, and Generalizability in ADHD Detection from Social Media Data [0.0]
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent mental health condition affecting both children and adults, yet it remains severely underdiagnosed.
Recent advances in artificial intelligence, particularly in Natural Language Processing (NLP) and Machine Learning (ML), offer promising solutions for scalable and non-invasive ADHD screening methods using social media data.
This paper presents a comprehensive study on ADHD detection, leveraging both shallow machine learning models and deep learning approaches, to analyze linguistic patterns in ADHD-related social media text.
arXiv Detail & Related papers (2024-11-23T15:26:01Z) - Challenges in the Differential Classification of Individual Diagnoses from Co-Occurring Autism and ADHD Using Survey Data [2.521920073279046]
Autism and Attention-Deficit Hyperactivity Disorder (ADHD) are two of the most commonly observed neurodevelopmental conditions in childhood.
Providing a specific computational assessment to distinguish between the two can prove difficult and time intensive.
We trained machine learning models on data from the National Survey of Children's Health to identify behaviors to target as features in automated clinical decision support systems.
arXiv Detail & Related papers (2024-11-13T03:38:56Z) - Refining ADHD diagnosis with EEG: The impact of preprocessing and temporal segmentation on classification accuracy [41.94295877935867]
This study highlights the importance of preprocessing and segmentation in improving the reliability of ADHD diagnosis through EEG.
Models trained on later EEG segments achieved significantly higher accuracy, indicating the potential role of cognitive fatigue in distinguishing ADHD.
arXiv Detail & Related papers (2024-07-11T09:07:22Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - Skeleton-based action analysis for ADHD diagnosis [10.393047508477173]
We propose a novel ADHD diagnosis system with a skeleton-based action recognition framework.
Compared to conventional methods, the proposed method shows cost-efficiency and significant performance improvement.
Our method is widely applicable for mass screening.
arXiv Detail & Related papers (2023-04-14T13:07:27Z) - Preliminary study on the impact of EEG density on TMS-EEG classification
in Alzheimer's disease [48.42347515853289]
We use TMS-evoked EEG responses to classify Alzheimer's patients from healthy controls.
The accuracy, sensitivity and specificity were of 92.7%, 96.58% and 88.2% respectively.
arXiv Detail & Related papers (2022-05-19T20:34:04Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD)
In this study, we propose an automatic method of determining the duration of TMS induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations.
arXiv Detail & Related papers (2022-04-29T19:27:06Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.