LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
- URL: http://arxiv.org/abs/2504.04704v1
- Date: Mon, 07 Apr 2025 03:22:15 GMT
- Title: LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
- Authors: Manlai Liang, JiaMing Zhang, Xiong Li, Jinlong Li,
- Abstract summary: LagKV is a KV allocation strategy only relying on straight forward comparison among KV themself.<n>Results on LongBench and PasskeyRetrieval show that, our approach achieves nearly zero loss when the ratio is $2times$ and $approx 90%$ of the original model performance.
- Score: 13.45388421871017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing size of the Key-Value (KV) cache during the Large Language Models long-context inference is the main obstacle for its balance between the deployment cost and task accuracy. To reduce the KV cache size in such scenarios, most previous efforts leveraged on the attention weight to evict non-critical cache tokens. But there is a trade-off in those methods, they usually require major modifiation of the inference infrastructure and significant computation overhead. Base on the fact that the Large Lanuage models are autoregresssive models, we propose {\it LagKV}, a KV allocation strategy only relying on straight forward comparison among KV themself. It is a totally attention free method which offers easy integration to the main stream inference platform and comparable performance comparing to other complicated KV compression methods. Results on LongBench and PasskeyRetrieval show that, our approach achieves nearly zero loss when the ratio is $2\times$ and $\approx 90\%$ of the original model performance for $8\times$. Especially in the 64-digit passkey retrieval task, our mehod outperforms the attention weight based method $H_2O$ over $60\%$ with same compression ratios. Our code is available at \url{https://github.com/AI-Lab-China-Merchants-Bank/LagKV}.
Related papers
- DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.<n>It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.<n>Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - BaKlaVa -- Budgeted Allocation of KV cache for Long-context Inference [6.222836318380985]
BaKlaVa is a method to allocate optimal memory for individual KV-caches across the model.<n>We evaluate our method on LLaMA-3-8B, and Qwen2.5-7B models.
arXiv Detail & Related papers (2025-02-18T04:08:29Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
In large language models (LLMs), the memory usage of KV cache has become a critical bottleneck during inference.<n>The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension separately.<n>In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression.
arXiv Detail & Related papers (2024-12-17T09:20:31Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.
We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.
Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - Unifying KV Cache Compression for Large Language Models with LeanKV [28.452123478834803]
Large language models (LLMs) exhibit exceptional performance but incur significant serving costs due to their substantial memory requirements.
Existing KV cache compression techniques, such as quantization and pruning, apply uniform treatment to both keys and values, and discard unimportant tokens entirely.
We introduce LeanKV, a framework that advances KV cache compression by exploiting three levels of differentiation in the KV cache.
arXiv Detail & Related papers (2024-12-04T08:51:23Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios [13.144156413032896]
We introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression.
We show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability.
Our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
arXiv Detail & Related papers (2024-09-16T17:36:50Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
Existing approaches to reduce the Key-Value cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length.
We find a clear correlation between the $L$ and the attention scores over cached KV pairs, where a low $L$ of a key embedding leads to a high attention score during decoding.
Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy.
arXiv Detail & Related papers (2024-06-17T11:35:16Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.