GAMDTP: Dynamic Trajectory Prediction with Graph Attention Mamba Network
- URL: http://arxiv.org/abs/2504.04862v1
- Date: Mon, 07 Apr 2025 09:19:20 GMT
- Title: GAMDTP: Dynamic Trajectory Prediction with Graph Attention Mamba Network
- Authors: Yunxiang Liu, Hongkuo Niu, Jianlin Zhu,
- Abstract summary: We introduce GAMDTP, a graph attention-based network tailored for dynamic trajectory prediction.<n>GAMDTP encodes the high-definition map(HD map) data and the agents' historical trajectory coordinates.<n>Experiments on the Argoverse dataset demonstrate GAMDTP achieves superior accuracy in dynamic trajectory prediction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate motion prediction of traffic agents is crucial for the safety and stability of autonomous driving systems. In this paper, we introduce GAMDTP, a novel graph attention-based network tailored for dynamic trajectory prediction. Specifically, we fuse the result of self attention and mamba-ssm through a gate mechanism, leveraging the strengths of both to extract features more efficiently and accurately, in each graph convolution layer. GAMDTP encodes the high-definition map(HD map) data and the agents' historical trajectory coordinates and decodes the network's output to generate the final prediction results. Additionally, recent approaches predominantly focus on dynamically fusing historical forecast results and rely on two-stage frameworks including proposal and refinement. To further enhance the performance of the two-stage frameworks we also design a scoring mechanism to evaluate the prediction quality during the proposal and refinement processes. Experiments on the Argoverse dataset demonstrates that GAMDTP achieves state-of-the-art performance, achieving superior accuracy in dynamic trajectory prediction.
Related papers
- Trajectory Mamba: Efficient Attention-Mamba Forecasting Model Based on Selective SSM [16.532357621144342]
This paper introduces Trajectory Mamba, a novel efficient trajectory prediction framework based on the selective state-space model (SSM)<n>To address the potential reduction in prediction accuracy resulting from modifications to the attention mechanism, we propose a joint polyline encoding strategy.<n>Our model achieves state-of-the-art results in terms of inference speed and parameter efficiency on both the Argoverse 1 and Argoverse 2 datasets.
arXiv Detail & Related papers (2025-03-13T21:31:12Z) - Rethinking Link Prediction for Directed Graphs [73.36395969796804]
Link prediction for directed graphs is a crucial task with diverse real-world applications.<n>Recent advances in embedding methods and Graph Neural Networks (GNNs) have shown promising improvements.<n>We propose a unified framework to assess the expressiveness of existing methods, highlighting the impact of dual embeddings and decoder design on performance.
arXiv Detail & Related papers (2025-02-08T23:51:05Z) - Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction [11.99118889081249]
We propose a Pattern-Matching Dynamic Memory Network (PM-DMNet) for traffic prediction.
PM-DMNet employs a novel dynamic memory network to capture traffic pattern features with only O(N) complexity.
The proposed model is superior to existing benchmarks.
arXiv Detail & Related papers (2024-08-12T15:12:30Z) - MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving [15.965681867350215]
This paper introduces a trajectory prediction model tailored for autonomous driving.
It harnesses historical trajectory data combined with a novel geometric dynamic graph-based behavior-aware module.
It achieves computational efficiency and reduced parameter overhead.
arXiv Detail & Related papers (2024-05-02T13:13:52Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNet is a novel dynamic trajectory forecasting method.
We propose a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions.
Our code is available at https://github.com/XiaolongTang23/HPNet.
arXiv Detail & Related papers (2024-04-09T14:42:31Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
We introduce RatPose, a bio-robot motion prediction dataset constructed by considering the influence factors of individuals and environments.
We propose a Dual-stream Motion-Scenario Decoupling framework that effectively separates scenario-oriented and motion-oriented features.
We demonstrate significant performance improvements of the proposed textitDMSD framework on different difficulty-level tasks.
arXiv Detail & Related papers (2023-05-17T14:14:31Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
We present a graph-based trajectory prediction network named the Dual Scale Predictor.
It encodes both the static and dynamical driving context in a hierarchical manner.
Thanks to the proposed dual-scale context fusion network, our DSP is able to generate accurate and human-like multi-modal trajectories.
arXiv Detail & Related papers (2021-11-02T13:42:16Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.