Futureproof Static Memory Planning
- URL: http://arxiv.org/abs/2504.04874v1
- Date: Mon, 07 Apr 2025 09:28:54 GMT
- Title: Futureproof Static Memory Planning
- Authors: Christos Lamprakos, Panagiotis Xanthopoulos, Manolis Katsaragakis, Sotirios Xydis, Dimitrios Soudris, Francky Catthoor,
- Abstract summary: "AI memory wall" combined with deep neural networks' static architecture has reignited interest in dynamic storage allocation.<n>We present idealloc, a low-fragmentation, high-performance DSA implementation designed for million-buffer instances.
- Score: 7.031511274524772
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The NP-complete combinatorial optimization task of assigning offsets to a set of buffers with known sizes and lifetimes so as to minimize total memory usage is called dynamic storage allocation (DSA). Existing DSA implementations bypass the theoretical state-of-the-art algorithms in favor of either fast but wasteful heuristics, or memory-efficient approaches that do not scale beyond one thousand buffers. The "AI memory wall", combined with deep neural networks' static architecture, has reignited interest in DSA. We present idealloc, a low-fragmentation, high-performance DSA implementation designed for million-buffer instances. Evaluated on a novel suite of particularly hard benchmarks from several domains, idealloc ranks first against four production implementations in terms of a joint effectiveness/robustness criterion.
Related papers
- FLAMES: A Hybrid Spiking-State Space Model for Adaptive Memory Retention in Event-Based Learning [16.60622265961373]
FLAMES is a hybrid framework integrating structured state-space dynamics with event-driven computation.<n>By bridging neuromorphic computing and structured sequence modeling, FLAMES enables scalable long-range reasoning in event-driven systems.
arXiv Detail & Related papers (2025-04-02T00:08:19Z) - A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models [22.725326215887435]
We introduce a Randomized Subspace Optimization framework for pre-training and fine-tuning Large Language Models.<n>Our approach decomposes the high-dimensional training problem into a series of lower-dimensional subproblems.<n>This structured reduction in dimensionality allows our method to simultaneously reduce memory usage for both activations and states.
arXiv Detail & Related papers (2025-02-11T03:32:10Z) - Efficient Adaptive Optimization via Subset-Norm and Subspace-Momentum: Fast, Memory-Reduced Training with Convergence Guarantees [5.399838579600896]
We introduce two complementary techniques for memory optimization.
One technique, Subset-Norm, reduces the momentum state's memory footprint by a low-dimensional subspace.
The other technique, Subspace-Momentum, reduces the momentum state's memory footprint by a low-dimensional subspace.
arXiv Detail & Related papers (2024-11-11T16:48:07Z) - Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
We propose a tile-based strategy that partitions the contrastive loss calculation into arbitrary small blocks.
We also introduce a multi-level tiling strategy to leverage the hierarchical structure of distributed systems.
Compared to SOTA memory-efficient solutions, it achieves a two-order-of-magnitude reduction in memory while maintaining comparable speed.
arXiv Detail & Related papers (2024-10-22T17:59:30Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
We introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens.
Our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens.
arXiv Detail & Related papers (2024-06-24T03:59:17Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
We present NumS, an array programming library which optimize NumPy-like expressions on task-based distributed systems.
This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS)
We show that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem.
arXiv Detail & Related papers (2022-06-28T20:13:40Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Rethinking Space-Time Networks with Improved Memory Coverage for
Efficient Video Object Segmentation [68.45737688496654]
We establish correspondences directly between frames without re-encoding the mask features for every object.
With the correspondences, every node in the current query frame is inferred by aggregating features from the past in an associative fashion.
We validated that every memory node now has a chance to contribute, and experimentally showed that such diversified voting is beneficial to both memory efficiency and inference accuracy.
arXiv Detail & Related papers (2021-06-09T16:50:57Z) - Semantically Constrained Memory Allocation (SCMA) for Embedding in
Efficient Recommendation Systems [27.419109620575313]
A key challenge for deep learning models is to work with millions of categorical classes or tokens.
We propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information.
We demonstrate a significant reduction in the memory footprint while maintaining performance.
arXiv Detail & Related papers (2021-02-24T19:55:49Z) - Adaptive Thompson Sampling Stacks for Memory Bounded Open-Loop Planning [9.805886870200872]
We propose Stable Yet Memory Bounded Open-Loop (SYMBOL) planning, a general memory bounded approach to partially observable open-loop planning.
SYMBOL maintains an adaptive stack of Thompson Sampling bandits, whose size is bounded by the planning horizon and can be automatically adapted according to the underlying domain without any prior domain knowledge beyond a generative model.
arXiv Detail & Related papers (2019-07-11T09:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.