Video-Bench: Human-Aligned Video Generation Benchmark
- URL: http://arxiv.org/abs/2504.04907v2
- Date: Tue, 29 Apr 2025 15:56:46 GMT
- Title: Video-Bench: Human-Aligned Video Generation Benchmark
- Authors: Hui Han, Siyuan Li, Jiaqi Chen, Yiwen Yuan, Yuling Wu, Chak Tou Leong, Hanwen Du, Junchen Fu, Youhua Li, Jie Zhang, Chi Zhang, Li-jia Li, Yongxin Ni,
- Abstract summary: Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos.<n>This paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions.<n> Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions.
- Score: 26.31594706735867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
Related papers
- VideoGen-Eval: Agent-based System for Video Generation Evaluation [54.662739174367836]
Video generation has rendered existing evaluation systems inadequate for assessing state-of-the-art models.
We propose VideoGen-Eval, an agent evaluation system that integrates content structuring, MLLM-based content judgment, and patch tools for temporal-dense dimensions.
We introduce a video generation benchmark to evaluate existing cutting-edge models and verify the effectiveness of our evaluation system.
arXiv Detail & Related papers (2025-03-30T14:12:21Z) - VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models [111.5892290894904]
VBench is a benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions.
We provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception.
VBench++ supports evaluating text-to-video and image-to-video.
arXiv Detail & Related papers (2024-11-20T17:54:41Z) - Towards A Better Metric for Text-to-Video Generation [102.16250512265995]
Generative models have demonstrated remarkable capability in synthesizing high-quality text, images, and videos.
We introduce a novel evaluation pipeline, the Text-to-Video Score (T2VScore)
This metric integrates two pivotal criteria: (1) Text-Video Alignment, which scrutinizes the fidelity of the video in representing the given text description, and (2) Video Quality, which evaluates the video's overall production caliber with a mixture of experts.
arXiv Detail & Related papers (2024-01-15T15:42:39Z) - VBench: Comprehensive Benchmark Suite for Video Generative Models [100.43756570261384]
VBench is a benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions.
We provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception.
We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations.
arXiv Detail & Related papers (2023-11-29T18:39:01Z) - Video-Bench: A Comprehensive Benchmark and Toolkit for Evaluating
Video-based Large Language Models [81.84810348214113]
Video-based large language models (Video-LLMs) have been recently introduced, targeting both fundamental improvements in perception and comprehension, and a diverse range of user inquiries.
To guide the development of such a model, the establishment of a robust and comprehensive evaluation system becomes crucial.
This paper proposes textitVideo-Bench, a new comprehensive benchmark along with a toolkit specifically designed for evaluating Video-LLMs.
arXiv Detail & Related papers (2023-11-27T18:59:58Z) - EvalCrafter: Benchmarking and Evaluating Large Video Generation Models [70.19437817951673]
We argue that it is hard to judge the large conditional generative models from the simple metrics since these models are often trained on very large datasets with multi-aspect abilities.
Our approach involves generating a diverse and comprehensive list of 700 prompts for text-to-video generation.
Then, we evaluate the state-of-the-art video generative models on our carefully designed benchmark, in terms of visual qualities, content qualities, motion qualities, and text-video alignment with 17 well-selected objective metrics.
arXiv Detail & Related papers (2023-10-17T17:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.