Balancing Robustness and Efficiency in Embedded DNNs Through Activation Function Selection
- URL: http://arxiv.org/abs/2504.05119v1
- Date: Mon, 07 Apr 2025 14:21:31 GMT
- Title: Balancing Robustness and Efficiency in Embedded DNNs Through Activation Function Selection
- Authors: Jon GutiƩrrez Zaballa, Koldo Basterretxea, Javier Echanobe,
- Abstract summary: Machine learning-based embedded systems for safety-critical applications must be robust to perturbations caused by soft errors.<n>We focus on encoder-decoder convolutional models developed for semantic segmentation of hyperspectral images with application to autonomous driving systems.
- Score: 1.474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning-based embedded systems for safety-critical applications, such as aerospace and autonomous driving, must be robust to perturbations caused by soft errors. As transistor geometries shrink and voltages decrease, modern electronic devices become more susceptible to background radiation, increasing the concern about failures produced by soft errors. The resilience of deep neural networks (DNNs) to these errors depends not only on target device technology but also on model structure and the numerical representation and arithmetic precision of their parameters. Compression techniques like pruning and quantization, used to reduce memory footprint and computational complexity, alter both model structure and representation, affecting soft error robustness. In this regard, although often overlooked, the choice of activation functions (AFs) impacts not only accuracy and trainability but also compressibility and error resilience. This paper explores the use of bounded AFs to enhance robustness against parameter perturbations, while evaluating their effects on model accuracy, compressibility, and computational load with a technology-agnostic approach. We focus on encoder-decoder convolutional models developed for semantic segmentation of hyperspectral images with application to autonomous driving systems. Experiments are conducted on an AMD-Xilinx's KV260 SoM.
Related papers
- Designing DNNs for a trade-off between robustness and processing performance in embedded devices [1.474723404975345]
Machine learning-based embedded systems need to be robust against soft errors.<n>This paper investigates the suitability of using bounded AFs to improve model robustness against perturbations.<n>We analyze encoder-decoder fully convolutional models aimed at performing semantic segmentation tasks on hyperspectral images for scene understanding in autonomous driving.
arXiv Detail & Related papers (2024-12-04T19:34:33Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)<n>By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.<n>We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance.
Most present techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context.
In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss.
arXiv Detail & Related papers (2024-10-07T09:08:32Z) - Quantized Non-Volatile Nanomagnetic Synapse based Autoencoder for
Efficient Unsupervised Network Anomaly Detection [0.07892577704654172]
We show that implementing the autoencoder in edge devices capable of learning in real-time is challenging due to limited hardware, energy, and computational resources.
We propose a ferromagnetic racetrack with engineered notches hosting a magnetic domain wall (DW) as the autoencoder synapses.
Our DW-based approach demonstrates a remarkable reduction of at least three orders of magnitude in weight updates during training compared to the floating-point approach.
arXiv Detail & Related papers (2023-09-12T02:29:09Z) - ApproxABFT: Approximate Algorithm-Based Fault Tolerance for Neural Network Processing [7.578258600530223]
We propose ApproxABFT, which initiates error recovery only when computational errors are significant.<n>This approach avoids unnecessary recovery procedures, streamlines the error recovery process, and focuses on correcting impactful errors.<n> Experimental results demonstrate that ApproxABFT reduces the computing overhead by 67.83% and improves the tolerable bit error rate by an order of magnitude on average.
arXiv Detail & Related papers (2023-02-21T06:21:28Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
We present an error kernel driven activation alignment algorithm for image data.
EKDAA accomplishes through the introduction of locally derived error transmission kernels and error maps.
Results are presented for an EKDAA trained CNN that employs a non-differentiable activation function.
arXiv Detail & Related papers (2022-06-03T21:14:10Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural
Accelerators with Application to Neural Architecture Search [25.841113960607334]
Emerging device-based Computing-in-memory (CiM) has been proved to be a promising candidate for high-energy efficiency deep neural network (DNN) computations.
Most emerging devices suffer uncertainty issues, resulting in a difference between actual data stored and the weight value it is designed to be.
This leads to an accuracy drop from trained models to actually deployed platforms.
arXiv Detail & Related papers (2021-07-06T23:29:36Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.