A Reinforcement Learning Method for Environments with Stochastic Variables: Post-Decision Proximal Policy Optimization with Dual Critic Networks
- URL: http://arxiv.org/abs/2504.05150v2
- Date: Fri, 11 Apr 2025 03:14:53 GMT
- Title: A Reinforcement Learning Method for Environments with Stochastic Variables: Post-Decision Proximal Policy Optimization with Dual Critic Networks
- Authors: Leonardo Kanashiro Felizardo, Edoardo Fadda, Paolo Brandimarte, Emilio Del-Moral-Hernandez, MariĆ” Cristina Vasconcelos Nascimento,
- Abstract summary: Post-Decision Proximal Policy Optimization is a novel variation of the leading deep reinforcement learning method, Proximal Policy Optimization.<n>Our approach incorporates post-decision states and dual critics to reduce the problem's dimensionality and enhance the accuracy of value function estimation.
- Score: 2.3453441553817043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Post-Decision Proximal Policy Optimization (PDPPO), a novel variation of the leading deep reinforcement learning method, Proximal Policy Optimization (PPO). The PDPPO state transition process is divided into two steps: a deterministic step resulting in the post-decision state and a stochastic step leading to the next state. Our approach incorporates post-decision states and dual critics to reduce the problem's dimensionality and enhance the accuracy of value function estimation. Lot-sizing is a mixed integer programming problem for which we exemplify such dynamics. The objective of lot-sizing is to optimize production, delivery fulfillment, and inventory levels in uncertain demand and cost parameters. This paper evaluates the performance of PDPPO across various environments and configurations. Notably, PDPPO with a dual critic architecture achieves nearly double the maximum reward of vanilla PPO in specific scenarios, requiring fewer episode iterations and demonstrating faster and more consistent learning across different initializations. On average, PDPPO outperforms PPO in environments with a stochastic component in the state transition. These results support the benefits of using a post-decision state. Integrating this post-decision state in the value function approximation leads to more informed and efficient learning in high-dimensional and stochastic environments.
Related papers
- PIP: Perturbation-based Iterative Pruning for Large Language Models [5.511065308044068]
We propose PIP (Perturbation-based Iterative Pruning), a novel double-view structured pruning method to optimize Large Language Models.<n>Our experiments show that PIP reduces the parameter count by approximately 20% while retaining over 85% of the original model's accuracy.
arXiv Detail & Related papers (2025-01-25T17:10:50Z) - Beyond the Boundaries of Proximal Policy Optimization [17.577317574595206]
This work offers an alternative perspective of PPO, in which it is decomposed into the inner-loop estimation of update vectors.
We propose outer proximal policy optimization (outer-PPO); a framework wherein these update vectors are applied using an arbitrary gradient-based gradient.
Methods are evaluated against an aggressively tuned PPO baseline on Brax, Jumanji and MinAtar environments.
arXiv Detail & Related papers (2024-11-01T15:29:10Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.<n>We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.<n>This appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - A Theoretical Analysis of Optimistic Proximal Policy Optimization in
Linear Markov Decision Processes [13.466249082564213]
We propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback.
Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both linear MDPs and adversarial linear MDPs with full information.
arXiv Detail & Related papers (2023-05-15T17:55:24Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Proximal Policy Optimization Smoothed Algorithm [0.0]
We present a PPO variant, named Proximal Policy Optimization Smooth Algorithm (PPOS)
Its critical improvement is the use of a functional clipping method instead of a flat clipping method.
We show that it outperforms the latest PPO variants on both performance and stability in challenging continuous control tasks.
arXiv Detail & Related papers (2020-12-04T07:43:50Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
In active perception tasks, agent aims to select sensory actions that reduce uncertainty about one or more hidden variables.
Partially observable Markov decision processes (POMDPs) provide a natural model for such problems.
As the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially.
arXiv Detail & Related papers (2020-09-21T09:11:36Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - A maximum-entropy approach to off-policy evaluation in average-reward
MDPs [54.967872716145656]
This work focuses on off-policy evaluation (OPE) with function approximation in infinite-horizon undiscounted Markov decision processes (MDPs)
We provide the first finite-sample OPE error bound, extending existing results beyond the episodic and discounted cases.
We show that this results in an exponential-family distribution whose sufficient statistics are the features, paralleling maximum-entropy approaches in supervised learning.
arXiv Detail & Related papers (2020-06-17T18:13:37Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.