Federated Learning for Medical Image Classification: A Comprehensive Benchmark
- URL: http://arxiv.org/abs/2504.05238v1
- Date: Mon, 07 Apr 2025 16:22:18 GMT
- Title: Federated Learning for Medical Image Classification: A Comprehensive Benchmark
- Authors: Zhekai Zhou, Guibo Luo, Mingzhi Chen, Zhenyu Weng, Yuesheng Zhu,
- Abstract summary: We conduct a comprehensive evaluation of several state-of-the-art federated learning algorithms in the context of medical imaging.<n>No single algorithm consistently delivers optimal performance across all medical federated learning scenarios.<n>Our code will be released on GitHub, offering a reliable and comprehensive benchmark for future federated learning studies in medical imaging.
- Score: 19.725507209432198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The federated learning paradigm is wellsuited for the field of medical image analysis, as it can effectively cope with machine learning on isolated multicenter data while protecting the privacy of participating parties. However, current research on optimization algorithms in federated learning often focuses on limited datasets and scenarios, primarily centered around natural images, with insufficient comparative experiments in medical contexts. In this work, we conduct a comprehensive evaluation of several state-of-the-art federated learning algorithms in the context of medical imaging. We conduct a fair comparison of classification models trained using various federated learning algorithms across multiple medical imaging datasets. Additionally, we evaluate system performance metrics, such as communication cost and computational efficiency, while considering different federated learning architectures. Our findings show that medical imaging datasets pose substantial challenges for current federated learning optimization algorithms. No single algorithm consistently delivers optimal performance across all medical federated learning scenarios, and many optimization algorithms may underperform when applied to these datasets. Our experiments provide a benchmark and guidance for future research and application of federated learning in medical imaging contexts. Furthermore, we propose an efficient and robust method that combines generative techniques using denoising diffusion probabilistic models with label smoothing to augment datasets, widely enhancing the performance of federated learning on classification tasks across various medical imaging datasets. Our code will be released on GitHub, offering a reliable and comprehensive benchmark for future federated learning studies in medical imaging.
Related papers
- Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.<n>The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.<n>The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Private, Efficient and Scalable Kernel Learning for Medical Image Analysis [1.7999333451993955]
OKRA (Orthonormal K-fRAmes) is a novel randomized encoding-based approach for kernel-based machine learning.
It significantly enhances scalability and speed compared to current state-of-the-art solutions.
arXiv Detail & Related papers (2024-10-21T10:03:03Z) - Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
We introduce a robust and versatile framework that combines AI and crowdsourcing to improve the quality and quantity of medical image datasets.
Our approach utilise a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently.
We employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features.
arXiv Detail & Related papers (2024-09-04T21:22:54Z) - AliFuse: Aligning and Fusing Multi-modal Medical Data for Computer-Aided Diagnosis [1.64647940449869]
We propose a transformer-based framework, called Alifuse, for aligning and fusing multimodal medical data.
We convert medical images and both unstructured and structured clinical records into vision and language tokens.
We apply Alifuse to classify Alzheimer's disease, achieving state-of-the-art performance on five public datasets and outperforming eight baselines.
arXiv Detail & Related papers (2024-01-02T07:28:21Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Federated Learning for Medical Image Analysis: A Survey [16.800565615106784]
Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem.
As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently.
arXiv Detail & Related papers (2023-06-09T15:46:42Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - ContIG: Self-supervised Multimodal Contrastive Learning for Medical
Imaging with Genetics [4.907551775445731]
We propose ContIG, a self-supervised method that can learn from large datasets of unlabeled medical images and genetic data.
Our approach aligns images and several genetic modalities in the feature space using a contrastive loss.
We also perform genome-wide association studies on the features learned by our models, uncovering interesting relationships between images and genetic data.
arXiv Detail & Related papers (2021-11-26T11:06:12Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Automated Pancreas Segmentation Using Multi-institutional Collaborative
Deep Learning [9.727026678755678]
We study the use of federated learning between two institutions in a real-world setting to collaboratively train a model.
We quantitatively compare the segmentation models obtained with federated learning and local training alone.
Our experimental results show that federated learning models have higher generalizability than standalone training.
arXiv Detail & Related papers (2020-09-28T08:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.