Knowledge-Instruct: Effective Continual Pre-training from Limited Data using Instructions
- URL: http://arxiv.org/abs/2504.05571v1
- Date: Tue, 08 Apr 2025 00:00:36 GMT
- Title: Knowledge-Instruct: Effective Continual Pre-training from Limited Data using Instructions
- Authors: Oded Ovadia, Meni Brief, Rachel Lemberg, Eitam Sheetrit,
- Abstract summary: We introduce Knowledge-Instruct, a novel approach to efficiently inject knowledge from limited corpora through pure instruction-tuning.<n>By generating information-dense synthetic instruction data, it effectively integrates new knowledge while preserving general reasoning and instruction-following abilities.<n>We validate its effectiveness across diverse benchmarks, including Companies, a new dataset that we release to measure knowledge injection capabilities.
- Score: 0.3749861135832072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models (LLMs) acquire vast knowledge during pre-training, they often lack domain-specific, new, or niche information. Continual pre-training (CPT) attempts to address this gap but suffers from catastrophic forgetting and inefficiencies in low-data regimes. We introduce Knowledge-Instruct, a novel approach to efficiently inject knowledge from limited corpora through pure instruction-tuning. By generating information-dense synthetic instruction data, it effectively integrates new knowledge while preserving general reasoning and instruction-following abilities. Knowledge-Instruct demonstrates superior factual memorization, minimizes catastrophic forgetting, and remains scalable by leveraging synthetic data from relatively small language models. Additionally, it enhances contextual understanding, including complex multi-hop reasoning, facilitating integration with retrieval systems. We validate its effectiveness across diverse benchmarks, including Companies, a new dataset that we release to measure knowledge injection capabilities.
Related papers
- CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
We propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs)
By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data.
arXiv Detail & Related papers (2024-10-08T10:26:22Z) - A Unified Framework for Continual Learning and Unlearning [9.538733681436836]
Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.
We introduce a new framework that jointly tackles both tasks by leveraging controlled knowledge distillation.
Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
arXiv Detail & Related papers (2024-08-21T06:49:59Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
Continual learning allows models to learn from new data while retaining previously learned knowledge.
The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes.
We propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings.
arXiv Detail & Related papers (2024-08-02T07:51:44Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models [31.209774088374374]
This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models.
We employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information.
We show that TRELM reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.
arXiv Detail & Related papers (2024-03-17T13:04:35Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
Methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules.<n>Our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge.<n>A risk of introducing new knowledge is the potential forgetting of existing knowledge.
arXiv Detail & Related papers (2024-02-18T03:36:26Z) - Forgetting before Learning: Utilizing Parametric Arithmetic for
Knowledge Updating in Large Language Models [53.52344131257681]
We propose a new paradigm for fine-tuning called F-Learning, which employs parametric arithmetic to facilitate the forgetting of old knowledge and learning of new knowledge.
Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2023-11-14T09:12:40Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities.
Previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs.
We propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages.
arXiv Detail & Related papers (2021-12-02T08:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.