Reconstruction-Free Anomaly Detection with Diffusion Models via Direct Latent Likelihood Evaluation
- URL: http://arxiv.org/abs/2504.05662v1
- Date: Tue, 08 Apr 2025 04:23:43 GMT
- Title: Reconstruction-Free Anomaly Detection with Diffusion Models via Direct Latent Likelihood Evaluation
- Authors: Shunsuke Sakai, Tatsuhito Hasegawa,
- Abstract summary: We propose a novel diffusion-based anomaly detection method that circumvents the need for resource-intensive reconstruction.<n>Instead of reconstructing the input image, we directly infer its corresponding latent variables and measure their density under the Gaussian prior distribution.<n>Remarkably, the prior density proves effective as an anomaly score even when using a short partial diffusion process of only 2-5 steps.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models, with their robust distribution approximation capabilities, have demonstrated excellent performance in anomaly detection. However, conventional reconstruction-based approaches rely on computing the reconstruction error between the original and denoised images, which requires careful noise-strength tuning and over ten network evaluations per input-leading to significantly slower detection speeds. To address these limitations, we propose a novel diffusion-based anomaly detection method that circumvents the need for resource-intensive reconstruction. Instead of reconstructing the input image, we directly infer its corresponding latent variables and measure their density under the Gaussian prior distribution. Remarkably, the prior density proves effective as an anomaly score even when using a short partial diffusion process of only 2-5 steps. We evaluate our method on the MVTecAD dataset, achieving an AUC of 0.991 at 15 FPS, thereby setting a new state-of-the-art speed-AUC anomaly detection trade-off.
Related papers
- One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.
Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''
We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - Anomaly detection using Diffusion-based methods [15.049468347670421]
This paper explores the utility of diffusion-based models for anomaly detection.
It focuses on their efficacy in identifying deviations in both compact and high-resolution datasets.
arXiv Detail & Related papers (2024-12-10T14:17:23Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - ASD-Diffusion: Anomalous Sound Detection with Diffusion Models [6.659078422704148]
Anomalous Sound Detection based on Diffusion Models (ASD-Diffusion) is proposed for ASD in real-world factories.
Post-processing anomalies filter algorithm is proposed to detect anomalies that exhibit significant deviation from the original input after reconstruction.
Denoising diffusion implicit model is introduced to accelerate the inference speed.
arXiv Detail & Related papers (2024-09-24T10:42:23Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - On Diffusion Modeling for Anomaly Detection [13.312007032203857]
Diffusion models are attractive candidates for density-based anomaly detection.<n>We show that diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings.<n>These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods.
arXiv Detail & Related papers (2023-05-29T20:19:45Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
We reformulate the reconstruction process using a diffusion model into a noise-to-norm paradigm.
We propose a rapid one-step denoising paradigm, significantly faster than the traditional iterative denoising in diffusion models.
The segmentation sub-network predicts pixel-level anomaly scores using the input image and its anomaly-free restoration.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.