POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
- URL: http://arxiv.org/abs/2504.05692v1
- Date: Tue, 08 Apr 2025 05:33:13 GMT
- Title: POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
- Authors: Songyan Zhang, Yongtao Ge, Jinyuan Tian, Guangkai Xu, Hao Chen, Chen Lv, Chunhua Shen,
- Abstract summary: We present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion.<n>Specifically, our method learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps.<n>We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks.
- Score: 53.19968902152528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D reconstruction in dynamic scenes primarily relies on the combination of geometry estimation and matching modules where the latter task is pivotal for distinguishing dynamic regions which can help to mitigate the interference introduced by camera and object motion. Furthermore, the matching module explicitly models object motion, enabling the tracking of specific targets and advancing motion understanding in complex scenarios. Recently, the proposed representation of pointmap in DUSt3R suggests a potential solution to unify both geometry estimation and matching in 3D space, but it still struggles with ambiguous matching in dynamic regions, which may hamper further improvement. In this work, we present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion. Specifically, our method first learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps within a unified coordinate system. Furthermore, we introduce a temporal motion module for dynamic motions that ensures scale consistency across different frames and enhances performance in tasks requiring both precise geometry and reliable matching, most notably 3D point tracking. We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks, including video depth estimation, 3D point tracking, and pose estimation. Code and models are publicly available at https://github.com/wyddmw/POMATO.
Related papers
- St4RTrack: Simultaneous 4D Reconstruction and Tracking in the World [106.91539872943864]
St4RTrack is a framework that simultaneously reconstructs and tracks dynamic video content in a world coordinate frame from RGB inputs.
We predict both pointmaps at the same moment, in the same world, capturing both static and dynamic scene geometry.
We establish a new extensive benchmark for world-frame reconstruction and tracking, demonstrating the effectiveness and efficiency of our unified, data-driven framework.
arXiv Detail & Related papers (2025-04-17T17:55:58Z) - D^2USt3R: Enhancing 3D Reconstruction with 4D Pointmaps for Dynamic Scenes [40.371542172080105]
We propose D2USt3R that regresses 4D pointmaps simuliously capture both static and dynamic 3D scene geometry in a feed-forward manner.<n>By explicitly incorporating both spatial and temporal aspects, our approach successfully encapsulates object-temporal dense correspondence to the proposed 4D pointmaps, enhancing downstream tasks.
arXiv Detail & Related papers (2025-04-08T17:59:50Z) - Dynamic Point Maps: A Versatile Representation for Dynamic 3D Reconstruction [56.32589034046427]
We introduce Dynamic Point Maps (DPM), extending standard point maps to support 4D tasks such as motion segmentation, scene flow estimation, 3D object tracking, and 2D correspondence.<n>We train a DPM predictor on a mixture of synthetic and real data and evaluate it across diverse benchmarks for video depth prediction, dynamic point cloud reconstruction, 3D scene flow and object pose tracking, achieving state-of-the-art performance.
arXiv Detail & Related papers (2025-03-20T16:41:50Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3D multi-object tracking plays a vital role in autonomous navigation.
Many approaches detect objects in 2D RGB sequences for tracking, which is lack of reliability when localizing objects in 3D space.
We propose a novel convolutional operation, named RelationConv, to better exploit the correlation between each pair of objects in the adjacent frames.
arXiv Detail & Related papers (2020-11-25T16:14:40Z) - Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking [34.40019455462043]
We propose a joint spatial-temporal optimization-based stereo 3D object tracking method.
From the network, we detect corresponding 2D bounding boxes on adjacent images and regress an initial 3D bounding box.
Dense object cues that associating to the object centroid are then predicted using a region-based network.
arXiv Detail & Related papers (2020-04-20T13:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.