DDT: Decoupled Diffusion Transformer
- URL: http://arxiv.org/abs/2504.05741v2
- Date: Wed, 09 Apr 2025 04:23:38 GMT
- Title: DDT: Decoupled Diffusion Transformer
- Authors: Shuai Wang, Zhi Tian, Weilin Huang, Limin Wang,
- Abstract summary: Diffusion transformers encode noisy inputs to extract semantic component and decode higher frequency with identical modules.<n>textbfcolorddtDecoupled textbfcolorddtTransformer(textbfcolorddtDDT)<n>textbfcolorddtTransformer(textbfcolorddtDDT)<n>textbfcolorddtTransformer(textbfcolorddtDDT)
- Score: 51.84206763079382
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion transformers have demonstrated remarkable generation quality, albeit requiring longer training iterations and numerous inference steps. In each denoising step, diffusion transformers encode the noisy inputs to extract the lower-frequency semantic component and then decode the higher frequency with identical modules. This scheme creates an inherent optimization dilemma: encoding low-frequency semantics necessitates reducing high-frequency components, creating tension between semantic encoding and high-frequency decoding. To resolve this challenge, we propose a new \textbf{\color{ddt}D}ecoupled \textbf{\color{ddt}D}iffusion \textbf{\color{ddt}T}ransformer~(\textbf{\color{ddt}DDT}), with a decoupled design of a dedicated condition encoder for semantic extraction alongside a specialized velocity decoder. Our experiments reveal that a more substantial encoder yields performance improvements as model size increases. For ImageNet $256\times256$, Our DDT-XL/2 achieves a new state-of-the-art performance of {1.31 FID}~(nearly $4\times$ faster training convergence compared to previous diffusion transformers). For ImageNet $512\times512$, Our DDT-XL/2 achieves a new state-of-the-art FID of 1.28. Additionally, as a beneficial by-product, our decoupled architecture enhances inference speed by enabling the sharing self-condition between adjacent denoising steps. To minimize performance degradation, we propose a novel statistical dynamic programming approach to identify optimal sharing strategies.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - Improving the Diffusability of Autoencoders [54.920783089085035]
Latent diffusion models have emerged as the leading approach for generating high-quality images and videos.<n>We perform a spectral analysis of modern autoencoders and identify inordinate high-frequency components in their latent spaces.<n>We hypothesize that this high-frequency component interferes with the coarse-to-fine nature of the diffusion synthesis process and hinders the generation quality.
arXiv Detail & Related papers (2025-02-20T18:45:44Z) - LTX-Video: Realtime Video Latent Diffusion [4.7789714048042775]
LTX-Video is a transformer-based latent diffusion model.<n>It seamlessly integrates the Video-VAE and the denoising transformer.<n>It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video 768 atx512 resolution in just 2 seconds on an Nvidia H100 GPU.
arXiv Detail & Related papers (2024-12-30T19:00:25Z) - Dynamic Diffusion Transformer [67.13876021157887]
Diffusion Transformer (DiT) has demonstrated superior performance but suffers from substantial computational costs.
We propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation.
With 3% additional fine-tuning, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet.
arXiv Detail & Related papers (2024-10-04T14:14:28Z) - StreamDiffusion: A Pipeline-level Solution for Real-time Interactive
Generation [29.30999290150683]
We introduce StreamDiffusion, a real-time diffusion pipeline for interactive image generation.
Existing diffusion models are adept at creating images from text or image prompts, yet they often fall short in real-time interaction.
We present a novel approach that transforms the original sequential denoising into the denoising process.
arXiv Detail & Related papers (2023-12-19T18:18:33Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
We study the UNet encoder and empirically analyze the encoder features.
We find that encoder features change minimally, whereas the decoder features exhibit substantial variations across different time-steps.
We validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation.
arXiv Detail & Related papers (2023-12-15T08:46:43Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
We design an optimized conformer that is small enough to meet on-device restrictions and has fast inference on TPUs.
Our proposed encoder can double as a strong standalone encoder in on device, and as the first part of a high-performance ASR pipeline.
arXiv Detail & Related papers (2023-03-31T23:30:48Z) - Streaming parallel transducer beam search with fast-slow cascaded
encoders [23.416682253435837]
Streaming and non-streaming ASR for RNN Transducers can be unified by cascading causal and non-causal encoders.
We propose a novel parallel time-synchronous beam search algorithm for transducers that decodes from fast-slow encoders.
arXiv Detail & Related papers (2022-03-29T17:29:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.