Federated Unlearning Made Practical: Seamless Integration via Negated Pseudo-Gradients
- URL: http://arxiv.org/abs/2504.05822v1
- Date: Tue, 08 Apr 2025 09:05:33 GMT
- Title: Federated Unlearning Made Practical: Seamless Integration via Negated Pseudo-Gradients
- Authors: Alessio Mora, Carlo Mazzocca, Rebecca Montanari, Paolo Bellavista,
- Abstract summary: This paper introduces a novel method that leverages negated Pseudo-gradients Updates for Federated Unlearning (PUF)<n>Our approach only uses standard client model updates, anyway employed during regular FL rounds, and interprets them as pseudo-gradients.<n>Unlike state-of-the-art mechanisms, PUF seamlessly integrates with FL, incurs no additional computational and communication overhead beyond standard FL rounds, and supports concurrent unlearning requests.
- Score: 3.12131298354022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The right to be forgotten is a fundamental principle of privacy-preserving regulations and extends to Machine Learning (ML) paradigms such as Federated Learning (FL). While FL enhances privacy by enabling collaborative model training without sharing private data, trained models still retain the influence of training data. Federated Unlearning (FU) methods recently proposed often rely on impractical assumptions for real-world FL deployments, such as storing client update histories or requiring access to a publicly available dataset. To address these constraints, this paper introduces a novel method that leverages negated Pseudo-gradients Updates for Federated Unlearning (PUF). Our approach only uses standard client model updates, anyway employed during regular FL rounds, and interprets them as pseudo-gradients. When a client needs to be forgotten, we apply the negated of their pseudo-gradients, appropriately scaled, to the global model. Unlike state-of-the-art mechanisms, PUF seamlessly integrates with FL workflows, incurs no additional computational and communication overhead beyond standard FL rounds, and supports concurrent unlearning requests. We extensively evaluated the proposed method on two well-known benchmark image classification datasets (CIFAR-10 and CIFAR-100) and a real-world medical imaging dataset for segmentation (ProstateMRI), using three different neural architectures: two residual networks and a vision transformer. The experimental results across various settings demonstrate that PUF achieves state-of-the-art forgetting effectiveness and recovery time, without relying on any additional assumptions, thus underscoring its practical applicability.
Related papers
- FedQUIT: On-Device Federated Unlearning via a Quasi-Competent Virtual Teacher [4.291269657919828]
Federated Learning (FL) systems enable the collaborative training of machine learning models without requiring centralized collection of individual data.<n>We propose FedQUIT, a novel algorithm that uses knowledge distillation to scrub the contribution of the data to forget from an FL global model.
arXiv Detail & Related papers (2024-08-14T14:36:28Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness [4.9851737525099225]
Federated Learning can be affected by data and device heterogeneities, caused by clients' different local data distributions and latencies in uploading model updates.
We present a new FL framework that ensures the accuracy and computational efficiency of this conversion.
arXiv Detail & Related papers (2023-09-24T03:19:40Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data.
We propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side.
Our regularization scheme adaptively adjusts to the client's training data based on the global model entropy and the client's label distribution.
arXiv Detail & Related papers (2023-05-31T07:00:42Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
We propose a novel and general method named Federated Self-supervised Learning with Feature-correlation based Aggregation (FedFoA)
Our insight is to utilize feature correlation to align the feature mappings and calibrate the local model updates across clients during their local training process.
We prove that FedFoA is a model-agnostic training framework and can be easily compatible with state-of-the-art unsupervised FL methods.
arXiv Detail & Related papers (2022-11-14T13:59:50Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
We conduct a systematic study to explore pre-training for federated learning.
We find that pre-training can improve FL, but also close its accuracy gap to the counterpart centralized learning.
We conclude our paper with an attempt to understand the effect of pre-training on FL.
arXiv Detail & Related papers (2022-06-23T06:02:33Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Federated Unlearning [24.60965999954735]
Federated learning (FL) has emerged as a promising distributed machine learning (ML) paradigm.
Practical needs of the "right to be forgotten" and countering data poisoning attacks call for efficient techniques that can remove, or unlearn, specific training data from the trained FL model.
We present FedEraser, the first federated unlearning methodology that can eliminate the influence of a federated client's data on the global FL model.
arXiv Detail & Related papers (2020-12-27T08:54:37Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.