Deep spatio-temporal point processes: Advances and new directions
- URL: http://arxiv.org/abs/2504.06364v1
- Date: Tue, 08 Apr 2025 18:28:12 GMT
- Title: Deep spatio-temporal point processes: Advances and new directions
- Authors: Xiuyuan Cheng, Zheng Dong, Yao Xie,
- Abstract summary: Stemporal-temporal point processes (STPPs) model discrete events distributed in time and space.<n>Recent innovations integrate deep neural architectures, either by modeling the conditional intensity function directly or by learning flexible, data-driven influence kernels.<n>This article reviews the development of the deep influence kernel approach, which enjoys statistical explainability.
- Score: 19.382241594513374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatio-temporal point processes (STPPs) model discrete events distributed in time and space, with important applications in areas such as criminology, seismology, epidemiology, and social networks. Traditional models often rely on parametric kernels, limiting their ability to capture heterogeneous, nonstationary dynamics. Recent innovations integrate deep neural architectures -- either by modeling the conditional intensity function directly or by learning flexible, data-driven influence kernels, substantially broadening their expressive power. This article reviews the development of the deep influence kernel approach, which enjoys statistical explainability, since the influence kernel remains in the model to capture the spatiotemporal propagation of event influence and its impact on future events, while also possessing strong expressive power, thereby benefiting from both worlds. We explain the main components in developing deep kernel point processes, leveraging tools such as functional basis decomposition and graph neural networks to encode complex spatial or network structures, as well as estimation using both likelihood-based and likelihood-free methods, and address computational scalability for large-scale data. We also discuss the theoretical foundation of kernel identifiability. Simulated and real-data examples highlight applications to crime analysis, earthquake aftershock prediction, and sepsis prediction modeling, and we conclude by discussing promising directions for the field.
Related papers
- Dynamic Graph Structure Estimation for Learning Multivariate Point Process using Spiking Neural Networks [14.77536193242342]
Spiking Dynamic Graph Network is a novel framework that leverages the temporal processing capabilities of spiking neural networks (SNNs) and spike-dependent plasticity (STD-P)<n>It adapts to any dataset by learning dynamic-temporal dependencies directly from event data, enhancing generalizability and modeling.<n>Our evaluations conducted on both synthetic and real-world datasets including NYC Taxi, 911 Reddit, and Stack Overflow, demonstrate superior accuracy while maintaining computational efficiency.
arXiv Detail & Related papers (2025-04-01T23:23:10Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
We introduce a theoretical framework that leverages latent directions in input space, which can be related to contextual information.
We derive an exact formula for the context-dependent manifold capacity that depends on manifold geometry and context correlations.
Our framework's increased expressivity captures representation reformatting in deep networks at early stages of the layer hierarchy, previously inaccessible to analysis.
arXiv Detail & Related papers (2024-05-10T23:37:31Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Deep graph kernel point processes [17.74234892097879]
This paper presents a novel point process model for discrete event data over graphs, where the event interaction occurs within a latent graph structure.
The key idea is to represent the influence kernel by Graph Neural Networks (GNN) to capture the underlying graph structure.
Compared with prior works focusing on directly modeling the conditional intensity function using neural networks, our kernel presentation herds the repeated event influence patterns more effectively.
arXiv Detail & Related papers (2023-06-20T06:15:19Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Spatio-temporal point processes with deep non-stationary kernels [18.10670233156497]
We develop a new deep non-stationary influence kernel that can model non-stationary-temporal point processes.
The main idea is to approximate the influence kernel with a novel and general low-rank decomposition.
We also take a new approach to maintain the non-negativity constraint of the conditional intensity by introducing a log-barrier penalty.
arXiv Detail & Related papers (2022-11-21T04:49:39Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.