Exploiting Meta-Learning-based Poisoning Attacks for Graph Link Prediction
- URL: http://arxiv.org/abs/2504.06492v1
- Date: Tue, 08 Apr 2025 23:36:29 GMT
- Title: Exploiting Meta-Learning-based Poisoning Attacks for Graph Link Prediction
- Authors: Mingchen Li, Di Zhuang, Keyu Chen, Dumindu Samaraweera, Morris Chang,
- Abstract summary: Link prediction in graph data utilizes various algorithms and machine learning/deep learning models to predict potential relationships between graph nodes.<n>Recent research has highlighted the vulnerability of link prediction models to adversarial attacks, such as poisoning and evasion attacks.<n>This article proposes an unweighted graph poisoning attack approach using meta-learning techniques to undermine VGAE's link prediction performance.
- Score: 12.179477926103353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction in graph data utilizes various algorithms and machine learning/deep learning models to predict potential relationships between graph nodes. This technique has found widespread use in numerous real-world applications, including recommendation systems, community networks, and biological structures. However, recent research has highlighted the vulnerability of link prediction models to adversarial attacks, such as poisoning and evasion attacks. Addressing the vulnerability of these models is crucial to ensure stable and robust performance in link prediction applications. While many works have focused on enhancing the robustness of the Graph Convolution Network (GCN) model, the Variational Graph Auto-Encoder (VGAE), a sophisticated model for link prediction, has not been thoroughly investigated in the context of graph adversarial attacks. To bridge this gap, this article proposes an unweighted graph poisoning attack approach using meta-learning techniques to undermine VGAE's link prediction performance. We conducted comprehensive experiments on diverse datasets to evaluate the proposed method and its parameters, comparing it with existing approaches in similar settings. Our results demonstrate that our approach significantly diminishes link prediction performance and outperforms other state-of-the-art methods.
Related papers
- Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Variational Disentangled Graph Auto-Encoders for Link Prediction [10.390861526194662]
This paper proposes a novel framework with two variants, the disentangled graph auto-encoder (DGAE) and the variational disentangled graph auto-encoder (VDGAE)
The proposed framework infers the latent factors that cause edges in the graph and disentangles the representation into multiple channels corresponding to unique latent factors.
arXiv Detail & Related papers (2023-06-20T06:25:05Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Deepened Graph Auto-Encoders Help Stabilize and Enhance Link Prediction [11.927046591097623]
Link prediction is a relatively under-studied graph learning task, with current state-of-the-art models based on one- or two-layers of shallow graph auto-encoder (GAE) architectures.
In this paper, we focus on addressing a limitation of current methods for link prediction, which can only use shallow GAEs and variational GAEs.
Our proposed methods innovatively incorporate standard auto-encoders (AEs) into the architectures of GAEs, where standard AEs are leveraged to learn essential, low-dimensional representations via seamlessly integrating the adjacency information and node features
arXiv Detail & Related papers (2021-03-21T14:43:10Z) - Reinforcement Learning-based Black-Box Evasion Attacks to Link
Prediction in Dynamic Graphs [87.5882042724041]
Link prediction in dynamic graphs (LPDG) is an important research problem that has diverse applications.
We study the vulnerability of LPDG methods and propose the first practical black-box evasion attack.
arXiv Detail & Related papers (2020-09-01T01:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.