Attributes-aware Visual Emotion Representation Learning
- URL: http://arxiv.org/abs/2504.06578v1
- Date: Wed, 09 Apr 2025 05:00:43 GMT
- Title: Attributes-aware Visual Emotion Representation Learning
- Authors: Rahul Singh Maharjan, Marta Romeo, Angelo Cangelosi,
- Abstract summary: We introduce A4Net, a deep representation network to bridge the affective gap by leveraging four key attributes: brightness, colorfulness, scene context and facial expressions.<n>By fusing and jointly training all aspects of attribute recognition and visual emotion analysis, A4Net aims to provide a better insight into emotional content in images.
- Score: 2.9823425761391134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual emotion analysis or recognition has gained considerable attention due to the growing interest in understanding how images can convey rich semantics and evoke emotions in human perception. However, visual emotion analysis poses distinctive challenges compared to traditional vision tasks, especially due to the intricate relationship between general visual features and the different affective states they evoke, known as the affective gap. Researchers have used deep representation learning methods to address this challenge of extracting generalized features from entire images. However, most existing methods overlook the importance of specific emotional attributes such as brightness, colorfulness, scene understanding, and facial expressions. Through this paper, we introduce A4Net, a deep representation network to bridge the affective gap by leveraging four key attributes: brightness (Attribute 1), colorfulness (Attribute 2), scene context (Attribute 3), and facial expressions (Attribute 4). By fusing and jointly training all aspects of attribute recognition and visual emotion analysis, A4Net aims to provide a better insight into emotional content in images. Experimental results show the effectiveness of A4Net, showcasing competitive performance compared to state-of-the-art methods across diverse visual emotion datasets. Furthermore, visualizations of activation maps generated by A4Net offer insights into its ability to generalize across different visual emotion datasets.
Related papers
- Exploring Cognitive and Aesthetic Causality for Multimodal Aspect-Based Sentiment Analysis [34.100793905255955]
Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms.
Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content.
We present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects.
arXiv Detail & Related papers (2025-04-22T12:43:37Z) - StyleEDL: Style-Guided High-order Attention Network for Image Emotion
Distribution Learning [69.06749934902464]
We propose a style-guided high-order attention network for image emotion distribution learning termed StyleEDL.
StyleEDL interactively learns stylistic-aware representations of images by exploring the hierarchical stylistic information of visual contents.
In addition, we introduce a stylistic graph convolutional network to dynamically generate the content-dependent emotion representations.
arXiv Detail & Related papers (2023-08-06T03:22:46Z) - EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes [53.95428298229396]
We introduce EmoSet, the first large-scale visual emotion dataset annotated with rich attributes.
EmoSet comprises 3.3 million images in total, with 118,102 of these images carefully labeled by human annotators.
Motivated by psychological studies, in addition to emotion category, each image is also annotated with a set of describable emotion attributes.
arXiv Detail & Related papers (2023-07-16T06:42:46Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
Visual Emotion Analysis (VEA) aims to predict people's emotions towards different visual stimuli.
Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process.
We propose a novel textitSubjectivity Appraise-and-Match Network (SAMNet) to investigate the subjectivity in visual emotion distribution.
arXiv Detail & Related papers (2022-07-25T02:20:03Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
We propose a stimuli-aware visual emotion analysis (VEA) method consisting of three stages, namely stimuli selection, feature extraction and emotion prediction.
To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network.
Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets.
arXiv Detail & Related papers (2021-09-04T08:14:52Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.