Efficient Deployment of Spiking Neural Networks on SpiNNaker2 for DVS Gesture Recognition Using Neuromorphic Intermediate Representation
- URL: http://arxiv.org/abs/2504.06748v1
- Date: Wed, 09 Apr 2025 10:09:29 GMT
- Title: Efficient Deployment of Spiking Neural Networks on SpiNNaker2 for DVS Gesture Recognition Using Neuromorphic Intermediate Representation
- Authors: Sirine Arfa, Bernhard Vogginger, Chen Liu, Johannes Partzsch, Mark Schone, Christian Mayr,
- Abstract summary: Spiking Neural Networks (SNNs) are highly energy-efficient during inference.<n>Their ability to process event-driven inputs, such as data from dynamic vision sensors (DVS), further enhances their applicability to edge computing tasks.<n>We present the first benchmark for the DVS gesture recognition task using SNNs optimized for the many-core neuromorphic chip SpiNNaker2.
- Score: 2.649410674489787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) are highly energy-efficient during inference, making them particularly suitable for deployment on neuromorphic hardware. Their ability to process event-driven inputs, such as data from dynamic vision sensors (DVS), further enhances their applicability to edge computing tasks. However, the resource constraints of edge hardware necessitate techniques like weight quantization, which reduce the memory footprint of SNNs while preserving accuracy. Despite its importance, existing quantization methods typically focus on synaptic weights quantization without taking account of other critical parameters, such as scaling neuron firing thresholds. To address this limitation, we present the first benchmark for the DVS gesture recognition task using SNNs optimized for the many-core neuromorphic chip SpiNNaker2. Our study evaluates two quantization pipelines for fixed-point computations. The first approach employs post training quantization (PTQ) with percentile-based threshold scaling, while the second uses quantization aware training (QAT) with adaptive threshold scaling. Both methods achieve accurate 8-bit on-chip inference, closely approximating 32-bit floating-point performance. Additionally, our baseline SNNs perform competitively against previously reported results without specialized techniques. These models are deployed on SpiNNaker2 using the neuromorphic intermediate representation (NIR). Ultimately, we achieve 94.13% classification accuracy on-chip, demonstrating the SpiNNaker2's potential for efficient, low-energy neuromorphic computing.
Related papers
- ZOBNN: Zero-Overhead Dependable Design of Binary Neural Networks with Deliberately Quantized Parameters [0.0]
In this paper, we introduce a third advantage of very low-precision neural networks: improved fault-tolerance.
We investigate the impact of memory faults on state-of-the-art binary neural networks (BNNs) through comprehensive analysis.
We propose a technique to improve BNN dependability by restricting the range of float parameters through a novel deliberately uniform quantization.
arXiv Detail & Related papers (2024-07-06T05:31:11Z) - Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
Spiking Neural Networks (SNNs) leverage sparse spikes to represent information and process them in an event-driven manner.<n>We introduce a lightweight and hardware-friendly Quantized SNN that applies quantization to both synaptic weights and membrane potentials.<n>We present a new Weight-Spike Dual Regulation (WS-DR) method inspired by information entropy theory.
arXiv Detail & Related papers (2024-06-19T16:23:26Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
This work aims to bridge the gap between recent progress in quantized neural networks and spiking neural networks.
It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions.
The presented quantization function demonstrates the state-of-the-art performance on four popular benchmarks.
arXiv Detail & Related papers (2023-05-30T09:42:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Spike time displacement based error backpropagation in convolutional
spiking neural networks [0.6193838300896449]
In this paper, we extend the STiDi-BP algorithm to employ it in deeper and convolutional architectures.
The evaluation results on the image classification task based on two popular benchmarks, MNIST and Fashion-MNIST, confirm that this algorithm has been applicable in deep SNNs.
We consider a convolutional SNN with two sets of weights: real-valued weights that are updated in the backward pass and their signs, binary weights, that are employed in the feedforward process.
arXiv Detail & Related papers (2021-08-31T05:18:59Z) - Q-SpiNN: A Framework for Quantizing Spiking Neural Networks [14.727296040550392]
A prominent technique for reducing the memory footprint of Spiking Neural Networks (SNNs) without decreasing the accuracy significantly is quantization.
We propose Q-SpiNN, a novel quantization framework for memory-efficient SNNs.
For the unsupervised network, the Q-SpiNN reduces the memory footprint by ca. 4x, while maintaining the accuracy within 1% from the baseline on the MNIST dataset.
For the supervised network, the Q-SpiNN reduces the memory by ca. 2x, while keeping the accuracy within 2% from the baseline on the DVS-Gesture dataset
arXiv Detail & Related papers (2021-07-05T06:01:15Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training [68.63354877166756]
ActNN is a memory-efficient training framework that stores randomly quantized activations for back propagation.
ActNN reduces the memory footprint of the activation by 12x, and it enables training with a 6.6x to 14x larger batch size.
arXiv Detail & Related papers (2021-04-29T05:50:54Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNNs) have received much attention due to being potentially orders of magnitude faster in inference, as well as more power efficient, than full-precision counterparts.
In this work, we show that, under some mild constraints, computational complexity of the ternary inner product can be reduced by a factor of 2.
We elaborately design an implementation-dependent ternary quantization algorithm to mitigate the performance gap.
arXiv Detail & Related papers (2020-08-12T04:26:18Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.