DIMA: DIffusing Motion Artifacts for unsupervised correction in brain MRI images
- URL: http://arxiv.org/abs/2504.06767v1
- Date: Wed, 09 Apr 2025 10:43:38 GMT
- Title: DIMA: DIffusing Motion Artifacts for unsupervised correction in brain MRI images
- Authors: Paolo Angella, Luca Balbi, Fabrizio Ferrando, Paolo Traverso, Rosario Varriale, Vito Paolo Pastore, Matteo Santacesaria,
- Abstract summary: DIMA (DIffusing Motion Artifacts) is a novel framework that leverages diffusion models to enable unsupervised motion artifact correction in brain MRI.<n>Our two-phase approach first trains a diffusion model on unpaired motion-affected images to learn the distribution of motion artifacts.<n>This model then generates realistic motion artifacts on clean images, creating paired datasets suitable for supervised training of correction networks.
- Score: 4.117232425638352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion artifacts remain a significant challenge in Magnetic Resonance Imaging (MRI), compromising diagnostic quality and potentially leading to misdiagnosis or repeated scans. Existing deep learning approaches for motion artifact correction typically require paired motion-free and motion-affected images for training, which are rarely available in clinical settings. To overcome this requirement, we present DIMA (DIffusing Motion Artifacts), a novel framework that leverages diffusion models to enable unsupervised motion artifact correction in brain MRI. Our two-phase approach first trains a diffusion model on unpaired motion-affected images to learn the distribution of motion artifacts. This model then generates realistic motion artifacts on clean images, creating paired datasets suitable for supervised training of correction networks. Unlike existing methods, DIMA operates without requiring k-space manipulation or detailed knowledge of MRI sequence parameters, making it adaptable across different scanning protocols and hardware. Comprehensive evaluations across multiple datasets and anatomical planes demonstrate that our method achieves comparable performance to state-of-the-art supervised approaches while offering superior generalizability to real clinical data. DIMA represents a significant advancement in making motion artifact correction more accessible for routine clinical use, potentially reducing the need for repeat scans and improving diagnostic accuracy.
Related papers
- Assessing the use of Diffusion models for motion artifact correction in brain MRI [0.6554326244334868]
We critically evaluate the use of diffusion models for correcting motion artifacts in 2D brain MRI scans.<n>We compare a diffusion model-based approach with state-of-the-art methods consisting of Unets trained in a supervised fashion on motion-affected images.<n>Our findings reveal mixed results: diffusion models can produce accurate predictions or generate harmful hallucinations in this context.
arXiv Detail & Related papers (2025-02-03T14:56:48Z) - Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.<n>We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI [5.393543723150301]
This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data.
HaITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction.
HaITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling.
arXiv Detail & Related papers (2024-06-28T16:40:57Z) - Motion-Informed Deep Learning for Brain MR Image Reconstruction Framework [7.639405634241267]
Motion is estimated to be present in approximately 30% of clinical MRI scans.
Deep learning algorithms have been demonstrated to be effective for both the image reconstruction task and the motion correction task.
We propose a novel method to simultaneously accelerate imaging and correct motion.
arXiv Detail & Related papers (2024-05-28T02:16:35Z) - MAMOC: MRI Motion Correction via Masked Autoencoding [2.2553331475843343]
This paper introduces MAsked MOtion Correction (MAMOC), a novel method to address the issue of Retrospective Artifact Correction (RAC) in motion-affected MRI brain scans.
MAMOC uses masked autoencoding self-supervision, transfer learning and test-time prediction to efficiently remove motion artifacts, producing high-fidelity, native-resolution scans.
This work is the first to evaluate motion correction in MRI scans using real motion data on a public dataset, showing that MAMOC achieves improved performance over existing motion correction methods.
arXiv Detail & Related papers (2024-05-23T14:01:22Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.