Adaptive Locally Linear Embedding
- URL: http://arxiv.org/abs/2504.06829v1
- Date: Wed, 09 Apr 2025 12:40:13 GMT
- Title: Adaptive Locally Linear Embedding
- Authors: Ali Goli, Mahdieh Alizadeh, Hadi Sadoghi Yazdi,
- Abstract summary: A novel approach, Adaptive locally linear embedding(ALLE), is introduced to address this limitation.<n> Experimental results demonstrate that ALLE significantly improves the alignment between neighborhoods in the input and feature spaces.<n>This approach advances manifold learning by tailoring distance metrics to the underlying data, providing a robust solution for capturing intricate relationships in high-dimensional datasets.
- Score: 10.331256742632835
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Manifold learning techniques, such as Locally linear embedding (LLE), are designed to preserve the local neighborhood structures of high-dimensional data during dimensionality reduction. Traditional LLE employs Euclidean distance to define neighborhoods, which can struggle to capture the intrinsic geometric relationships within complex data. A novel approach, Adaptive locally linear embedding(ALLE), is introduced to address this limitation by incorporating a dynamic, data-driven metric that enhances topological preservation. This method redefines the concept of proximity by focusing on topological neighborhood inclusion rather than fixed distances. By adapting the metric based on the local structure of the data, it achieves superior neighborhood preservation, particularly for datasets with complex geometries and high-dimensional structures. Experimental results demonstrate that ALLE significantly improves the alignment between neighborhoods in the input and feature spaces, resulting in more accurate and topologically faithful embeddings. This approach advances manifold learning by tailoring distance metrics to the underlying data, providing a robust solution for capturing intricate relationships in high-dimensional datasets.
Related papers
- Learning Locally Adaptive Metrics that Enhance Structural Representation with $\texttt{LAMINAR}$ [0.0]
$textttLAMINAR$ is an unsupervised machine learning pipeline designed to enhance the representation of structure within data.
It produces a locally-adaptive-metric that produces structurally-informative density-based distances.
We demonstrate the utility of $textttLAMINAR$ by comparing its output to the Euclidean metric for structured data sets.
arXiv Detail & Related papers (2024-11-13T12:13:15Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
We propose a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees.
Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure.
We show that in a high-dimensional regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables.
arXiv Detail & Related papers (2024-07-01T18:48:55Z) - Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation [12.775562063735006]
Low-dimensional embeddings (LDEs) of high-dimensional data are ubiquitous in science and engineering.
We suggest a new perspective on LDE learning, reconstructing angles between data points.
arXiv Detail & Related papers (2024-06-14T09:44:06Z) - Hierarchical Features Matter: A Deep Exploration of Progressive Parameterization Method for Dataset Distillation [44.03611131165989]
We propose a novel generative parameterization method dubbed Hierarchical generative Distillation (H-PD)<n>The proposed H-PD achieves a significant performance improvement under various settings with equivalent time consumption.<n>It even surpasses current generative distillation using diffusion models under extreme compression ratios IPC=1 and IPC=10.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Trust your Good Friends: Source-free Domain Adaptation by Reciprocal
Neighborhood Clustering [50.46892302138662]
We address the source-free domain adaptation problem, where the source pretrained model is adapted to the target domain in the absence of source data.
Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters.
We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood.
arXiv Detail & Related papers (2023-09-01T15:31:18Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved.
The proposed algorithm has the same complexity as the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces.
arXiv Detail & Related papers (2021-09-22T06:45:37Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
We propose an extension to the framework of variational auto-encoders, where the Euclidean metric is a proxy for the similarity between data points.
We replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one.
We evaluate our method on a range of data-sets, including a video-tracking benchmark.
arXiv Detail & Related papers (2020-02-12T09:54:52Z) - Supervised Discriminative Sparse PCA with Adaptive Neighbors for
Dimensionality Reduction [47.1456603605763]
We propose a novel linear dimensionality reduction approach, supervised discriminative sparse PCA with adaptive neighbors (SDSPCAAN)
As a result, both global and local data structures, as well as the label information, are used for better dimensionality reduction.
arXiv Detail & Related papers (2020-01-09T17:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.