A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology
- URL: http://arxiv.org/abs/2504.06957v1
- Date: Wed, 09 Apr 2025 15:08:12 GMT
- Title: A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology
- Authors: Marco Acerbis, NataĊĦa Sladoje, Joakim Lindblad,
- Abstract summary: We evaluate the performance of several Deep Learning (DL) methods for cell detection in Papanicolaou-stained cytological Whole Slide Images (WSIs)<n>We examine recentoff-the-shelf algorithms as well as custom-designed detectors, applying them to two datasets.<n>Results show that centroid-based methods, particularly the Improved Fully Convolutional Regression Network (IFCRN) method, outperform segmentation-based methods in terms of both detection accuracy and computational efficiency.
- Score: 1.607370483729741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and efficient cell detection is crucial in many biomedical image analysis tasks. We evaluate the performance of several Deep Learning (DL) methods for cell detection in Papanicolaou-stained cytological Whole Slide Images (WSIs), focusing on accuracy of predictions and computational efficiency. We examine recentoff-the-shelf algorithms as well as custom-designed detectors, applying them to two datasets: the CNSeg Dataset and the Oral Cancer (OC) Dataset. Our comparison includes well-established segmentation methods such as StarDist, Cellpose, and the Segment Anything Model 2 (SAM2), alongside centroid-based Fully Convolutional Regression Network (FCRN) approaches. We introduce a suitable evaluation metric to assess the accuracy of predictions based on the distance from ground truth positions. We also explore the impact of dataset size and data augmentation techniques on model performance. Results show that centroid-based methods, particularly the Improved Fully Convolutional Regression Network (IFCRN) method, outperform segmentation-based methods in terms of both detection accuracy and computational efficiency. This study highlights the potential of centroid-based detectors as a preferred option for cell detection in resource-limited environments, offering faster processing times and lower GPU memory usage without compromising accuracy.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Cell Nuclei Detection and Classification in Whole Slide Images with Transformers [1.7129141499083573]
We show that CellNuc-DETR is twice as fast as the fastest segmentation-based method, HoVer-NeXt, while achieving substantially higher accuracy.<n>It surpasses CellViT in accuracy and is approximately ten times more efficient in inference speed on WSIs.
arXiv Detail & Related papers (2025-02-10T09:52:02Z) - A novel open-source ultrasound dataset with deep learning benchmarks for
spinal cord injury localization and anatomical segmentation [1.02101998415327]
We present an ultrasound dataset of 10,223-mode (B-mode) images consisting of sagittal slices of porcine spinal cords.
We benchmark the performance metrics of several state-of-the-art object detection algorithms to localize the site of injury.
We evaluate the zero-shot generalization capabilities of the segmentation models on human ultrasound spinal cord images.
arXiv Detail & Related papers (2024-09-24T20:22:59Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation [43.842694540544194]
Applying pretrained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality.<n>In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pretraining and test-time adaptation.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
Cervical cancer is one of the most deadly and common diseases among women worldwide.
We propose a fully automated framework that utilizes Deep Learning and feature selection.
The framework is evaluated on three publicly available benchmark datasets.
arXiv Detail & Related papers (2021-06-09T08:57:22Z) - Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark
Detection in Medical Images [15.7026400415269]
We propose a novel learning-to-learn framework for landmark detection.
Our proposed framework is general and shows the potential to improve the efficiency of anatomical landmark detection.
arXiv Detail & Related papers (2021-05-19T13:39:18Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.