Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
- URL: http://arxiv.org/abs/2504.07307v2
- Date: Tue, 22 Apr 2025 15:16:03 GMT
- Title: Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
- Authors: Jingxin Zhan, Yuchen Xin, Zhihua Zhang,
- Abstract summary: We consider a common case of the semi-bandit problem, where the learner exactly selects $m$ arms from the total $d$ arms.<n>We show that FTPL with a Fr'echet perturbation also enjoys the near optimal regret bound $mathcalO(sqrtnmdlog(d))$ in the adversarial setting.
- Score: 20.47953854427799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nmd\log(d)})$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Best-of-Both-Worlds Linear Contextual Bandits [45.378265414553226]
This study investigates the problem of $K$-armed linear contextual bandits, an instance of the multi-armed bandit problem, under an adversarial corruption.
We develop a strategy that is effective in both adversarial environments, with theoretical guarantees.
We refer to our strategy as the Best-of-Both-Worlds (BoBW) RealFTRL, due to its theoretical guarantees in both adversarial regimes.
arXiv Detail & Related papers (2023-12-27T09:32:18Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Fast and Regret Optimal Best Arm Identification: Fundamental Limits and Low-Complexity Algorithms [15.038210624870656]
Multi-Armed Bandit (MAB) problem with dual objectives: (i) quick identification and commitment to the optimal arm, and (ii) reward throughout a sequence of $T$ consecutive rounds.
This paper introduces emphRegret Best Arm Identification (ROBAI) which aims to achieve these dual objectives.
arXiv Detail & Related papers (2023-09-01T17:12:43Z) - Multi-Fidelity Multi-Armed Bandits Revisited [46.19926456682379]
We study the multi-fidelity multi-armed bandit (MF-MAB), an extension of the canonical multi-armed bandit (MAB) problem.
MF-MAB allows each arm to be pulled with different costs (fidelities) and observation accuracy.
arXiv Detail & Related papers (2023-06-13T13:19:20Z) - Contextual Combinatorial Bandits with Probabilistically Triggered Arms [55.9237004478033]
We study contextual bandits with probabilistically triggered arms (C$2$MAB-T) under a variety of smoothness conditions.
Under the triggering modulated (TPM) condition, we devise the C$2$-UC-T algorithm and derive a regret bound $tildeO(dsqrtT)$.
arXiv Detail & Related papers (2023-03-30T02:51:00Z) - On Submodular Contextual Bandits [92.45432756301231]
We consider the problem of contextual bandits where actions are subsets of a ground set and mean rewards are modeled by an unknown monotone submodular function.
We show that our algorithm efficiently randomizes around local optima of estimated functions according to the Inverse Gap Weighting strategy.
arXiv Detail & Related papers (2021-12-03T21:42:33Z) - Scale-Free Adversarial Multi-Armed Bandit with Arbitrary Feedback Delays [21.94728545221709]
We consider the Scale-Free Adversarial Multi Armed Bandit (MAB) problem with unrestricted feedback delays.
textttSFBanker achieves $mathcal O(sqrtK(D+T)L)cdot rm polylog(T, L)$ total regret, where $T$ is the total number of steps and $D$ is the total feedback delay.
arXiv Detail & Related papers (2021-10-26T04:06:51Z) - Combinatorial Bandits without Total Order for Arms [52.93972547896022]
We present a reward model that captures set-dependent reward distribution and assumes no total order for arms.
We develop a novel regret analysis and show an $Oleft(frack2 n log Tepsilonright)$ gap-dependent regret bound as well as an $Oleft(k2sqrtn T log Tright)$ gap-independent regret bound.
arXiv Detail & Related papers (2021-03-03T23:08:59Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z) - Explicit Best Arm Identification in Linear Bandits Using No-Regret
Learners [17.224805430291177]
We study the problem of best arm identification in linearly parameterised multi-armed bandits.
We propose an explicitly implementable and provably order-optimal sample-complexity algorithm to solve this problem.
arXiv Detail & Related papers (2020-06-13T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.