MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution
- URL: http://arxiv.org/abs/2504.07308v1
- Date: Wed, 09 Apr 2025 22:12:44 GMT
- Title: MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution
- Authors: Zhe Wang, Yuhua Ru, Aladine Chetouani, Fang Chen, Fabian Bauer, Liping Zhang, Didier Hans, Rachid Jennane, Mohamed Jarraya, Yung Hsin Chen,
- Abstract summary: MoEDiff-SR is a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR)<n>Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level.<n> Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency.
- Score: 8.193689534916988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) at lower field strengths (e.g., 3T) suffers from limited spatial resolution, making it challenging to capture fine anatomical details essential for clinical diagnosis and neuroimaging research. To overcome this limitation, we propose MoEDiff-SR, a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR). Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level, ensuring region-specific adaptation and enhanced SR performance. Specifically, our approach first employs a Transformer-based feature extractor to compute multi-scale patch embeddings, capturing both global structural information and local texture details. The extracted feature embeddings are then fed into an MoE gating network, which assigns adaptive weights to multiple diffusion-based denoisers, each specializing in different brain MRI characteristics, such as centrum semiovale, sulcal and gyral cortex, and grey-white matter junction. The final output is produced by aggregating the denoised results from these specialized experts according to dynamically assigned gating probabilities. Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency. Difference maps from each expert further highlight their distinct specializations, confirming the effective region-specific denoising capability and the interpretability of expert contributions. Additionally, clinical evaluation validates its superior diagnostic capability in identifying subtle pathological features, emphasizing its practical relevance in clinical neuroimaging. Our code is available at https://github.com/ZWang78/MoEDiff-SR.
Related papers
- FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
We propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff)
arXiv Detail & Related papers (2025-01-07T04:42:45Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - A Unified Framework for Synthesizing Multisequence Brain MRI via Hybrid Fusion [4.47838172826189]
We propose a novel unified framework for synthesizing multisequence MR images, called Hybrid Fusion GAN (HF-GAN)
We introduce a hybrid fusion encoder designed to ensure the disentangled extraction of complementary and modality-specific information.
Common feature representations are transformed into a target latent space via the modality infuser to synthesize missing MR sequences.
arXiv Detail & Related papers (2024-06-21T08:06:00Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Transferring Ultrahigh-Field Representations for Intensity-Guided Brain
Segmentation of Low-Field Magnetic Resonance Imaging [51.92395928517429]
The use of 7T MRI is limited by its high cost and lower accessibility compared to low-field (LF) MRI.
This study proposes a deep-learning framework that fuses the input LF magnetic resonance feature representations with the inferred 7T-like feature representations for brain image segmentation tasks.
arXiv Detail & Related papers (2024-02-13T12:21:06Z) - Unpaired MRI Super Resolution with Contrastive Learning [33.65350200042909]
Deep learning-based image super-resolution methods exhibit promise in improving MRI resolution without additional cost.
Due to lacking of aligned high-resolution (HR) and low-resolution (LR) MRI image pairs, unsupervised approaches are widely adopted for SR reconstruction with unpaired MRI images.
We propose an unpaired MRI SR approach that employs contrastive learning to enhance SR performance with limited HR data.
arXiv Detail & Related papers (2023-10-24T12:13:51Z) - DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI [0.0]
We introduce the first diffusion-driven counterfactual method, DreaMR, to enable fMRI interpretation with high specificity, plausibility and fidelity.
DreaMR performs diffusion-based resampling of an input fMRI sample to alter the decision of a downstream classifier, and then computes the minimal difference between the original and counterfactual samples for explanation.
Comprehensive experiments on neuroimaging datasets demonstrate the superior specificity, fidelity and efficiency of DreaMR in sample generation over state-of-the-art counterfactual methods for fMRI interpretation.
arXiv Detail & Related papers (2023-07-18T18:46:07Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
We employ a Swin UNEt Transformers model, trained on augmented Human Connectome Project data, to perform generalized denoising of dMRI.
We demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers.
We exceed current state-of-the-art denoising methods in accuracy and test-retest reliability of rapid diffusion tensor imaging requiring only 90 seconds of scan time.
arXiv Detail & Related papers (2023-03-10T03:39:23Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.