A Novel Mamba-based Sequential Recommendation Method
- URL: http://arxiv.org/abs/2504.07398v1
- Date: Thu, 10 Apr 2025 02:43:19 GMT
- Title: A Novel Mamba-based Sequential Recommendation Method
- Authors: Jun Yuan,
- Abstract summary: Sequential recommendation (SR) encodes user activity to predict the next action.<n> Transformer-based models have proven effective for sequential recommendation, but the complexity of the self-attention module in Transformers scales quadratically with the sequence length.<n>We propose a novel multi-head latent Mamba architecture, which employs multiple low-dimensional Mamba layers and fully connected layers.
- Score: 4.941272356564765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation (SR), which encodes user activity to predict the next action, has emerged as a widely adopted strategy in developing commercial personalized recommendation systems. Although Transformer-based models have proven effective for sequential recommendation, the complexity of the self-attention module in Transformers scales quadratically with the sequence length. Controlling model complexity is essential for large-scale recommendation systems, as these systems may need to handle billion-scale vocabularies that evolve continuously, as well as user behavior sequences that can exceed tens of thousands in length. In this paper, we propose a novel multi-head latent Mamba architecture, which employs multiple low-dimensional Mamba layers and fully connected layers coupled with positional encoding to simultaneously capture historical and item information within each latent subspace. Our proposed method not only enables scaling up to large-scale parameters but also extends to multi-domain recommendation by integrating and fine-tuning LLMs. Through extensive experiments on public datasets, we demonstrate how Hydra effectively addresses the effectiveness-efficiency dilemma, outperforming state-of-the-art sequential recommendation baselines with significantly fewer parameters and reduced training time.
Related papers
- LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Train Once, Deploy Anywhere: Matryoshka Representation Learning for Multimodal Recommendation [27.243116376164906]
We introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec)
Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions.
We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets.
arXiv Detail & Related papers (2024-09-25T05:12:07Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - DLCRec: A Novel Approach for Managing Diversity in LLM-Based Recommender Systems [9.433227503973077]
We propose a novel framework designed to enable fine-grained control over diversity in LLM-based recommendations.
Unlike traditional methods, DLCRec adopts a fine-grained task decomposition strategy, breaking down the recommendation process into three sub-tasks.
We introduce two data augmentation techniques that enhance the model's robustness to noisy and out-of-distribution data.
arXiv Detail & Related papers (2024-08-22T15:10:56Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Multi-Behavior Hypergraph-Enhanced Transformer for Sequential
Recommendation [33.97708796846252]
We introduce a new Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies.
Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels.
arXiv Detail & Related papers (2022-07-12T15:07:21Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.