On Model and Data Scaling for Skeleton-based Self-Supervised Gait Recognition
- URL: http://arxiv.org/abs/2504.07598v1
- Date: Thu, 10 Apr 2025 09:51:22 GMT
- Title: On Model and Data Scaling for Skeleton-based Self-Supervised Gait Recognition
- Authors: Adrian Cosma, Andy Cǎtrunǎ, Emilian Rǎdoi,
- Abstract summary: Gait recognition from video streams is a challenging problem in computer vision biometrics.<n>Recent advancements in self-supervised pretraining have led to the development of robust gait recognition models.<n>We conduct the first empirical study scaling on skeleton-based self-supervised gait recognition.
- Score: 3.6390165502400875
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gait recognition from video streams is a challenging problem in computer vision biometrics due to the subtle differences between gaits and numerous confounding factors. Recent advancements in self-supervised pretraining have led to the development of robust gait recognition models that are invariant to walking covariates. While neural scaling laws have transformed model development in other domains by linking performance to data, model size, and compute, their applicability to gait remains unexplored. In this work, we conduct the first empirical study scaling on skeleton-based self-supervised gait recognition to quantify the effect of data quantity, model size and compute on downstream gait recognition performance. We pretrain multiple variants of GaitPT - a transformer-based architecture - on a dataset of 2.7 million walking sequences collected in the wild. We evaluate zero-shot performance across four benchmark datasets to derive scaling laws for data, model size, and compute. Our findings demonstrate predictable power-law improvements in performance with increased scale and confirm that data and compute scaling significantly influence downstream accuracy. We further isolate architectural contributions by comparing GaitPT with GaitFormer under controlled compute budgets. These results provide practical insights into resource allocation and performance estimation for real-world gait recognition systems.
Related papers
- Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - DAGait: Generalized Skeleton-Guided Data Alignment for Gait Recognition [11.899411968690185]
We propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.
Our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
arXiv Detail & Related papers (2025-03-24T16:08:21Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Virchow2: Scaling Self-Supervised Mixed Magnification Models in Pathology [2.6761982943661438]
We introduce three new models: Virchow2, a 632 million parameter vision transformer, Virchow2G, a 1.9 billion parameter vision transformer, and Virchow2G Mini, a 22 million parameter distillation of Virchow2G.
We achieve state of the art performance on 12 tile-level tasks, as compared to the top performing competing models.
arXiv Detail & Related papers (2024-08-01T17:35:58Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
The Inter-Intra Modal Measure (IIMM) functions as a strong predictor of performance changes with fine-tuning.
Fine-tuning on tasks with higher IIMM scores produces greater in-domain performance gains but also induces more severe out-of-domain performance degradation.
With only a single forward pass of the target data, practitioners can leverage this key insight to evaluate the degree to which a model can be expected to improve following fine-tuning.
arXiv Detail & Related papers (2024-07-22T15:35:09Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - The Paradox of Motion: Evidence for Spurious Correlations in
Skeleton-based Gait Recognition Models [4.089889918897877]
This study challenges the prevailing assumption that vision-based gait recognition relies primarily on motion patterns.
We show through a comparative analysis that removing height information leads to notable performance degradation.
We propose a spatial transformer model processing individual poses, disregarding any temporal information, which achieves unreasonably good accuracy.
arXiv Detail & Related papers (2024-02-13T09:33:12Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Texture-Based Input Feature Selection for Action Recognition [3.9596068699962323]
We propose a novel method to determine the task-irrelevant content in inputs which increases the domain discrepancy.
We show that our proposed model is superior to existing models for action recognition on the HMDB-51 dataset and the Penn Action dataset.
arXiv Detail & Related papers (2023-02-28T23:56:31Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.