End-to-End Facial Expression Detection in Long Videos
- URL: http://arxiv.org/abs/2504.07660v1
- Date: Thu, 10 Apr 2025 11:18:46 GMT
- Title: End-to-End Facial Expression Detection in Long Videos
- Authors: Yini Fang, Alec Diallo, Yiqi Shi, Frederic Jumelle, Bertram Shi,
- Abstract summary: We propose an end-to-end Facial Expression Detection Network (FEDN) to jointly optimize spotting and recognition.<n>By unifying two tasks within a single network, we greatly reduce error propagation and enhance overall performance.
- Score: 0.2796197251957245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial expression detection involves two interrelated tasks: spotting, which identifies the onset and offset of expressions, and recognition, which classifies them into emotional categories. Most existing methods treat these tasks separately using a two-step training pipelines. A spotting model first detects expression intervals. A recognition model then classifies the detected segments. However, this sequential approach leads to error propagation, inefficient feature learning, and suboptimal performance due to the lack of joint optimization of the two tasks. We propose FEDN, an end-to-end Facial Expression Detection Network that jointly optimizes spotting and recognition. Our model introduces a novel attention-based feature extraction module, incorporating segment attention and sliding window attention to improve facial feature learning. By unifying two tasks within a single network, we greatly reduce error propagation and enhance overall performance. Experiments on CASME}^2 and CASME^3 demonstrate state-of-the-art accuracy for both spotting and detection, underscoring the benefits of joint optimization for robust facial expression detection in long videos.
Related papers
- Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot object detection (FSOD) aims at learning a detector that can fast adapt to previously unseen objects with scarce examples.
Existing methods solve this problem by performing subtasks of classification and localization utilizing a shared component.
We present that a general few-shot detector should consider the explicit decomposition of two subtasks, as well as leveraging information from both of them to enhance feature representations.
arXiv Detail & Related papers (2020-11-30T10:21:32Z) - Micro-Facial Expression Recognition Based on Deep-Rooted Learning
Algorithm [0.0]
An effective Micro-Facial Expression Based Deep-Rooted Learning (MFEDRL) classifier is proposed in this paper.
The performance of the algorithm will be evaluated using recognition rate and false measures.
arXiv Detail & Related papers (2020-09-12T12:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.