Data Requirement Goal Modeling for Machine Learning Systems
- URL: http://arxiv.org/abs/2504.07664v1
- Date: Thu, 10 Apr 2025 11:30:25 GMT
- Title: Data Requirement Goal Modeling for Machine Learning Systems
- Authors: Asma Yamani, Nadeen AlAmoudi, Salma Albilali, Malak Baslyman, Jameleddine Hassine,
- Abstract summary: This work proposes an approach to guide non-experts in identifying data requirements for Machine Learning systems.<n>We first develop the Data Requirement Goal Model (DRGM) by surveying the white literature.<n>We then validate the approach through two illustrative examples based on real-world projects.
- Score: 0.8854624631197942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning (ML) has been integrated into various software and systems. Two main components are essential for training an ML model: the training data and the ML algorithm. Given the critical role of data in ML system development, it has become increasingly important to assess the quality of data attributes and ensure that the data meets specific requirements before its utilization. This work proposes an approach to guide non-experts in identifying data requirements for ML systems using goal modeling. In this approach, we first develop the Data Requirement Goal Model (DRGM) by surveying the white literature to identify and categorize the issues and challenges faced by data scientists and requirement engineers working on ML-related projects. An initial DRGM was built to accommodate common tasks that would generalize across projects. Then, based on insights from both white and gray literature, a customization mechanism is built to help adjust the tasks, KPIs, and goals' importance of different elements within the DRGM. The generated model can aid its users in evaluating different datasets using GRL evaluation strategies. We then validate the approach through two illustrative examples based on real-world projects. The results from the illustrative examples demonstrate that the data requirements identified by the proposed approach align with the requirements of real-world projects, demonstrating the practicality and effectiveness of the proposed framework. The proposed dataset selection customization mechanism and the proposed DRGM are helpful in guiding non-experts in identifying the data requirements for machine learning systems tailored to a specific ML problem. This approach also aids in evaluating different dataset alternatives to choose the optimum dataset for the problem. For future work, we recommend implementing tool support to generate the DRGM based on a chatbot interface.
Related papers
- MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning [69.7347209018861]
We introduce MLLM-Selector, an automated approach that identifies valuable data for visual instruction tuning.<n>We calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance.<n>Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector.
arXiv Detail & Related papers (2025-03-26T12:42:37Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.<n>We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Metadata-based Data Exploration with Retrieval-Augmented Generation for Large Language Models [3.7685718201378746]
This research introduces a new architecture for data exploration which employs a form of Retrieval-Augmented Generation (RAG) to enhance metadata-based data discovery.
The proposed framework offers a new method for evaluating semantic similarity among heterogeneous data sources.
arXiv Detail & Related papers (2024-10-05T17:11:37Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.<n>This approach faces significant challenges, including the laborious and costly requirement for additional metadata.<n>We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.<n>Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - Data-centric Operational Design Domain Characterization for Machine
Learning-based Aeronautical Products [4.8461049669050915]
We give first rigorous characterization of Operational Design Domains (ODDs) for Machine Learning (ML)-based aeronautical products.
We propose the dimensions along which the parameters that define an ODD can be explicitly captured, together with a categorization of the data that ML-based applications can encounter in operation.
arXiv Detail & Related papers (2023-07-15T02:08:33Z) - Optimizing the AI Development Process by Providing the Best Support
Environment [0.756282840161499]
Main stages of machine learning are problem understanding, data management, model building, model deployment and maintenance.
The framework was built using python language to perform data augmentation using deep learning advancements.
arXiv Detail & Related papers (2023-04-29T00:44:50Z) - Designing Data: Proactive Data Collection and Iteration for Machine
Learning [12.295169687537395]
Lack of diversity in data collection has caused significant failures in machine learning (ML) applications.
New methods to track & manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability.
arXiv Detail & Related papers (2023-01-24T21:40:29Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.