LAPIS: A novel dataset for personalized image aesthetic assessment
- URL: http://arxiv.org/abs/2504.07670v1
- Date: Thu, 10 Apr 2025 11:42:56 GMT
- Title: LAPIS: A novel dataset for personalized image aesthetic assessment
- Authors: Anne-Sofie Maerten, Li-Wei Chen, Stefanie De Winter, Christophe Bossens, Johan Wagemans,
- Abstract summary: Leuven Art Personalized Image Set (LAPIS) is a novel dataset for personalized image aesthetic assessment (PIAA)<n>LAPIS consists of 11,723 images and was meticulously curated in collaboration with art historians.<n>We implement two existing state-of-the-art PIAA models and assess their performance on LAPIS.
- Score: 5.457078529757273
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present the Leuven Art Personalized Image Set (LAPIS), a novel dataset for personalized image aesthetic assessment (PIAA). It is the first dataset with images of artworks that is suitable for PIAA. LAPIS consists of 11,723 images and was meticulously curated in collaboration with art historians. Each image has an aesthetics score and a set of image attributes known to relate to aesthetic appreciation. Besides rich image attributes, LAPIS offers rich personal attributes of each annotator. We implemented two existing state-of-the-art PIAA models and assessed their performance on LAPIS. We assess the contribution of personal attributes and image attributes through ablation studies and find that performance deteriorates when certain personal and image attributes are removed. An analysis of failure cases reveals that both existing models make similar incorrect predictions, highlighting the need for improvements in artistic image aesthetic assessment. The LAPIS project page can be found at: https://github.com/Anne-SofieMaerten/LAPIS
Related papers
- FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models [112.94440113631897]
Current methods attempt to distill identity and style from source images.
"style" is a broad concept that includes texture, color, and artistic elements, but does not cover other important attributes such as lighting and dynamics.
We formulate a more effective approach to decompose the aesthetics of a picture into specific visual attributes, allowing users to apply characteristics such as lighting, texture, and dynamics from different images.
arXiv Detail & Related papers (2024-12-10T17:02:58Z) - APDDv2: Aesthetics of Paintings and Drawings Dataset with Artist Labeled Scores and Comments [45.57709215036539]
We introduce the Aesthetics Paintings and Drawings dataset (APDD), the first comprehensive collection of paintings encompassing 24 distinct artistic categories and 10 aesthetic attributes.
APDDv2 boasts an expanded image corpus and improved annotation quality, featuring detailed language comments.
We present an updated version of the Art Assessment Network for Specific Painting Styles, denoted as ArtCLIP. Experimental validation demonstrates the superior performance of this revised model in the realm of aesthetic evaluation, surpassing its predecessor in accuracy and efficacy.
arXiv Detail & Related papers (2024-11-13T11:46:42Z) - Predicting Scores of Various Aesthetic Attribute Sets by Learning from
Overall Score Labels [54.63611854474985]
In this paper, we propose to replace image attribute labels with feature extractors.
We use networks from different tasks to provide attribute features to our F2S model.
Our method makes it feasible to learn meaningful attribute scores for various aesthetic attribute sets in different types of images with only overall aesthetic scores.
arXiv Detail & Related papers (2023-12-06T01:41:49Z) - Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method [64.40494830113286]
We first introduce a large-scale AIAA dataset: Boldbrush Artistic Image dataset (BAID), which consists of 60,337 artistic images covering various art forms.
We then propose a new method, SAAN, which can effectively extract and utilize style-specific and generic aesthetic information to evaluate artistic images.
Experiments demonstrate that our proposed approach outperforms existing IAA methods on the proposed BAID dataset.
arXiv Detail & Related papers (2023-03-27T12:59:15Z) - VILA: Learning Image Aesthetics from User Comments with Vision-Language
Pretraining [53.470662123170555]
We propose learning image aesthetics from user comments, and exploring vision-language pretraining methods to learn multimodal aesthetic representations.
Specifically, we pretrain an image-text encoder-decoder model with image-comment pairs, using contrastive and generative objectives to learn rich and generic aesthetic semantics without human labels.
Our results show that our pretrained aesthetic vision-language model outperforms prior works on image aesthetic captioning over the AVA-Captions dataset.
arXiv Detail & Related papers (2023-03-24T23:57:28Z) - Aesthetic Attributes Assessment of Images with AMANv2 and DPC-CaptionsV2 [65.5524793975387]
We construct a novel dataset, named DPC-CaptionsV2, by a semi-automatic way.
Images of DPC-CaptionsV2 contain comments up to 4 aesthetic attributes: composition, lighting, color, and subject.
Our method can predict the comments on 4 aesthetic attributes, which are closer to aesthetic topics than those produced by the previous AMAN model.
arXiv Detail & Related papers (2022-08-09T03:20:59Z) - Personalized Image Aesthetics Assessment with Rich Attributes [35.61053167813472]
We conduct the most comprehensive subjective study of personalized image aesthetics and introduce a new personalized image Aesthetics database with Rich Attributes (PARA)
PARA features wealthy annotations, including 9 image-oriented objective attributes and 4 human-oriented subjective attributes.
We also propose a conditional PIAA model by utilizing subject information as conditional prior.
arXiv Detail & Related papers (2022-03-31T02:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.