Distilling Knowledge from Heterogeneous Architectures for Semantic Segmentation
- URL: http://arxiv.org/abs/2504.07691v1
- Date: Thu, 10 Apr 2025 12:24:58 GMT
- Title: Distilling Knowledge from Heterogeneous Architectures for Semantic Segmentation
- Authors: Yanglin Huang, Kai Hu, Yuan Zhang, Zhineng Chen, Xieping Gao,
- Abstract summary: We propose for the first time a generic knowledge distillation method for semantic segmentation from a heterogeneous perspective, named HeteroAKD.<n>To eliminate the influence of architecture-specific information, the intermediate features of both the teacher and student are skillfully projected into an aligned logits space.<n>Experiments conducted on three main-stream benchmarks using various teacher-student pairs demonstrate that our HeteroAKD outperforms state-of-the-art KD methods in facilitating distillation between heterogeneous architectures.
- Score: 15.303408699671513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current knowledge distillation (KD) methods for semantic segmentation focus on guiding the student to imitate the teacher's knowledge within homogeneous architectures. However, these methods overlook the diverse knowledge contained in architectures with different inductive biases, which is crucial for enabling the student to acquire a more precise and comprehensive understanding of the data during distillation. To this end, we propose for the first time a generic knowledge distillation method for semantic segmentation from a heterogeneous perspective, named HeteroAKD. Due to the substantial disparities between heterogeneous architectures, such as CNN and Transformer, directly transferring cross-architecture knowledge presents significant challenges. To eliminate the influence of architecture-specific information, the intermediate features of both the teacher and student are skillfully projected into an aligned logits space. Furthermore, to utilize diverse knowledge from heterogeneous architectures and deliver customized knowledge required by the student, a teacher-student knowledge mixing mechanism (KMM) and a teacher-student knowledge evaluation mechanism (KEM) are introduced. These mechanisms are performed by assessing the reliability and its discrepancy between heterogeneous teacher-student knowledge. Extensive experiments conducted on three main-stream benchmarks using various teacher-student pairs demonstrate that our HeteroAKD outperforms state-of-the-art KD methods in facilitating distillation between heterogeneous architectures.
Related papers
- Feature-based One-For-All: A Universal Framework for Heterogeneous Knowledge Distillation [28.722795943076306]
Knowledge distillation (KD) involves transferring knowledge from a pre-trained heavy teacher model to a lighter student model.<n>We introduce a feature-based one-for-all (FOFA) KD framework to enable feature distillation across diverse architecture.<n>Our framework comprises two key components. First, we design prompt tuning blocks that incorporate student feedback, allowing teacher features to adapt to the student model's learning process.
arXiv Detail & Related papers (2025-01-15T15:56:06Z) - One-for-All: Bridge the Gap Between Heterogeneous Architectures in
Knowledge Distillation [69.65734716679925]
Knowledge distillation has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme.
Most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family.
We propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures.
arXiv Detail & Related papers (2023-10-30T11:13:02Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - Leveraging Different Learning Styles for Improved Knowledge Distillation
in Biomedical Imaging [0.9208007322096533]
Our work endeavors to leverage the concept of knowledge diversification to improve the performance of model compression techniques like Knowledge Distillation (KD) and Mutual Learning (ML)
We use a single-teacher and two-student network in a unified framework that not only allows for the transfer of knowledge from teacher to students (KD) but also encourages collaborative learning between students (ML)
Unlike the conventional approach, where the teacher shares the same knowledge in the form of predictions or feature representations with the student network, our proposed approach employs a more diversified strategy by training one student with predictions and the other with feature maps from the teacher.
arXiv Detail & Related papers (2022-12-06T12:40:45Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
We propose a collaborative teacher-student learning via multiple knowledge transfer (CTSL-MKT)
It allows multiple students learn knowledge from both individual instances and instance relations in a collaborative way.
The experiments and ablation studies on four image datasets demonstrate that the proposed CTSL-MKT significantly outperforms the state-of-the-art KD methods.
arXiv Detail & Related papers (2021-01-21T07:17:04Z) - Multi-head Knowledge Distillation for Model Compression [65.58705111863814]
We propose a simple-to-implement method using auxiliary classifiers at intermediate layers for matching features.
We show that the proposed method outperforms prior relevant approaches presented in the literature.
arXiv Detail & Related papers (2020-12-05T00:49:14Z) - Multi-level Knowledge Distillation [13.71183256776644]
We introduce Multi-level Knowledge Distillation (MLKD) to transfer richer representational knowledge from teacher to student networks.
MLKD employs three novel teacher-student similarities: individual similarity, relational similarity, and categorical similarity.
Experiments demonstrate that MLKD outperforms other state-of-the-art methods on both similar-architecture and cross-architecture tasks.
arXiv Detail & Related papers (2020-12-01T15:27:15Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or ensemble of models (teacher)
In this study, we provide an extensive study on nine different KD methods which covers a broad spectrum of approaches to capture and transfer knowledge.
arXiv Detail & Related papers (2020-07-03T19:54:04Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.