Atomic Regional Superfluids in two-dimensional Moiré Time Crystals
- URL: http://arxiv.org/abs/2504.07782v1
- Date: Wed, 09 Apr 2025 05:31:31 GMT
- Title: Atomic Regional Superfluids in two-dimensional Moiré Time Crystals
- Authors: Weijie Liang, Weiping Zhang, Keye Zhang,
- Abstract summary: Moire physics has transcended spatial dimensions, extending into synthetic domains and enabling quantum phenomena.<n>We propose a theoretical model for a two-fluid (2D) Moirtice time crystal formed by ultracold atoms, induced by periodic perturbations applied to a non-lattice trap.
- Score: 0.6451914896767136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Moir\'e physics has transcended spatial dimensions, extending into synthetic domains and enabling novel quantum phenomena. We propose a theoretical model for a two-dimensional (2D) Moir\'e time crystal formed by ultracold atoms, induced by periodic perturbations applied to a non-lattice trap. Our analysis reveals the emergence of regional superfluid states exhibiting moir\'e-scale quantum coherence across temporal, spatial, and spatiotemporal domains. This work provides fundamental insights into temporal moir\'e phenomena and presents an alternative pathway to engineer spatial moir\'e phases without requiring twisted multilayer lattices.
Related papers
- Fate of the spatial-temporal order under quantum fluctuation [3.8121150313479655]
We investigate the dynamics beyond mean-field approximation.
Results show that the spatial-temporal lattice is melted in the mean-field level but survives in the quantum fluctuation.
arXiv Detail & Related papers (2024-11-07T13:18:44Z) - Nonperturbative decay of bipartite discrete time crystals [0.0]
We study prethermal time-crystalline order in periodically driven quantum Ising models on disorder-free decorated lattices.
We show through finite entanglement scaling that the system has an exponentially long-lived subharmonic response in the thermodynamic limit.
Our results thus uncover a variety of time crystals which may be realized on current digital quantum processors and analog quantum simulators.
arXiv Detail & Related papers (2024-11-01T15:13:43Z) - Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals [0.46040036610482665]
We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period.<n>Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals.
arXiv Detail & Related papers (2024-09-04T16:19:43Z) - Formation of Tesseract Time Crystals on a Quantum Computer [0.0]
Floquet driving has revolutionized the field of condensed matter physics.
Recent focus has shifted towards discrete time crystals (DTCs)
We explore the theoretical predictions, experimental realizations, and emerging possibilities of utilizing DTCs on quantum computers.
arXiv Detail & Related papers (2023-05-17T01:00:13Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Two-dimensional Thouless pumping in time-space crystalline structures [0.0]
Dynamics of particle in resonantly driven quantum well can be interpreted as that of a particle in a crystal-like structure, with the time playing the role of the coordinate.
We extend the analysis beyond a single quantum well by considering a driven one-dimensional optical lattice.
Such a setup allows us to explore adiabatic pumping in the spatial and the temporal dimensions separately, as well as to simulate simultaneous time-space pumping.
arXiv Detail & Related papers (2022-06-29T17:58:51Z) - Topological space-time crystal [1.0152838128195467]
We introduce a new class of out-of-equilibrium noninteracting topological phases, the topological space-time crystals.
These are time-dependent quantum systems which do not have discrete spatial translation symmetries, but instead are invariant under discrete space-time translations.
arXiv Detail & Related papers (2022-01-10T19:00:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.