Operator growth in many-body systems of higher spins
- URL: http://arxiv.org/abs/2504.07833v1
- Date: Thu, 10 Apr 2025 15:10:28 GMT
- Title: Operator growth in many-body systems of higher spins
- Authors: Igor Ermakov,
- Abstract summary: We study operator growth in many-body systems with on-site spins larger than $1/2$, considering both non-integrable and integrable regimes.<n>Specifically, we compute Lanczos coefficients in the one- and two-dimensional Ising models for spin values $S=1/2$, $1$, and $3/2$.<n>On the integrable side, we investigate the Potts model and find square-root growth $b_n sim sqrtn$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study operator growth in many-body systems with on-site spins larger than $1/2$, considering both non-integrable and integrable regimes. Specifically, we compute Lanczos coefficients in the one- and two-dimensional Ising models for spin values $S=1/2$, $1$, and $3/2$, and observe asymptotically linear growth $b_n \sim n$. On the integrable side, we investigate the Potts model and find square-root growth $b_n \sim \sqrt{n}$. Both results are consistent with the predictions of the Universal Operator Growth Hypothesis. To analyze operator dynamics in this setting, we employ a generalized operator basis constructed from tensor products of shift and clock operators, extending the concept of Pauli strings to higher local dimensions. We further report that the recently introduced formalism of equivalence classes of Pauli strings can be naturally extended to this setting. This formalism enables the study of simulable Heisenberg dynamics by identifying dynamically isolated operator subspaces of moderate dimensionality. As an example, we introduce the Kitaev-Potts model with spin-$1$, where the identification of such a subspace allows for exact time evolution at a computational cost lower than that of exact diagonalization.
Related papers
- Tensor network approximation of Koopman operators [0.0]
We propose a framework for approximating the evolution of observables of measure-preserving ergodic systems.
Our approach is based on a spectrally-convergent approximation of the skew-adjoint Koopman generator.
A key feature of this quantum-inspired approximation is that it captures information from a tensor product space of dimension $(2d+1)n$.
arXiv Detail & Related papers (2024-07-09T21:40:14Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.
We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Operator dynamics in Lindbladian SYK: a Krylov complexity perspective [0.0]
We analytically establish the linear growth of two sets of coefficients for any generic jump operators.
We find that the Krylov complexity saturates inversely with the dissipation strength, while the dissipative timescale grows logarithmically.
arXiv Detail & Related papers (2023-11-01T18:00:06Z) - Generating function for projected entangled-pair states [0.1759252234439348]
We extend the generating function approach for tensor network diagrammatic summation.
Taking the form of a one-particle excitation, we show that the excited state can be computed efficiently in the generating function formalism.
We conclude with a discussion on generalizations to multi-particle excitations.
arXiv Detail & Related papers (2023-07-16T15:49:37Z) - Numerically Probing the Universal Operator Growth Hypothesis [0.0]
We numerically test this hypothesis for a variety of exemplary systems.
The onset of the hypothesized universal behavior could not be observed in the attainable numerical data for the Heisenberg model.
arXiv Detail & Related papers (2022-03-01T15:15:47Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Geometry of Krylov Complexity [0.0]
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries.
We show that, in this geometry, operator growth is represented by geodesics and Krylov complexity is proportional to a volume.
We use techniques from quantum optics to study operator evolution with quantum information tools such as entanglement and Renyi entropies.
arXiv Detail & Related papers (2021-09-08T18:00:00Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.