Spectral delineation of Markov Generators: Classical vs Quantum
- URL: http://arxiv.org/abs/2504.07903v1
- Date: Thu, 10 Apr 2025 16:26:10 GMT
- Title: Spectral delineation of Markov Generators: Classical vs Quantum
- Authors: Dariusz Chruściński, Sergey Denisov, Wojciech Tarnowski, Karol Życzkowski,
- Abstract summary: The celebrated theorem of Perron and Frobenius implies that spectra of classical Markov operators, represented by matrices, are restricted to the unit disk.<n>We address the question of whether the spectra of generators, which induce Markovian evolution in continuous time, can be bound in a similar way.<n>The eigenvalues of the rescaled classical generators are confined to the modified Karpeleviuc regions, whereas the eigenvalues of the rescaled quantum generators fill the entire unit disk.
- Score: 0.8399688944263842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The celebrated theorem of Perron and Frobenius implies that spectra of classical Markov operators, represented by stochastic matrices, are restricted to the unit disk. This property holds also for spectra of quantum stochastic maps (quantum channels), which describe quantum Markovian evolution in discrete time. Moreover, the spectra of stochastic $N \times N$ matrices are additionally restricted to a subset of the unit disk, called Karpelevi\u{c} region, the shape of which depends on $N$. We address the question of whether the spectra of generators, which induce Markovian evolution in continuous time, can be bound in a similar way. We propose a rescaling that allows us to answer this question affirmatively. The eigenvalues of the rescaled classical generators are confined to the modified Karpelevi\u{c} regions, whereas the eigenvalues of the rescaled quantum generators fill the entire unit disk.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Asymptotic Gaussian Fluctuations of Eigenvectors in Spectral Clustering [24.558241146742205]
It is shown that the signal $+$ noise structure of a general spike random matrix model is transferred to the eigenvectors of the corresponding Gram kernel matrix.
This CLT-like result was the last missing piece to precisely predict the classification performance of spectral clustering.
arXiv Detail & Related papers (2024-02-19T17:25:12Z) - Exceptional points and quantum phase transition in a fermionic extension of the Swanson oscillator [8.84834042985207]
We propose a fermionic extension of a non-Hermitian quantum system consisting of a general representation of a quadratic Hamiltonian.
The model admits a quantum phase transition - we discuss the two phases and also demonstrate that the ground-state entanglement entropy exhibits a discontinuous jump.
arXiv Detail & Related papers (2024-01-30T17:20:34Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Emergent Quantum Mechanics at the Boundary of a Local Classical Lattice
Model [0.0]
We formulate a conceptually new model in which quantum mechanics emerges from classical mechanics.
We analytically estimate how much the model deviates from quantum mechanics.
arXiv Detail & Related papers (2022-07-19T18:00:00Z) - Spectra of generators of Markovian evolution in the thermodynamic limit:
From non-Hermitian to full evolution via tridiagonal Laurent matrices [0.0]
We obtain a representation of the Lindbladian as a direct integral of finite range bi-infinite Laurent matrices with rank-$r$-perturbations.
We prove gaplessness, absence of residual spectrum and a condition for convergence of finite volume spectra to their infinite volume counterparts.
arXiv Detail & Related papers (2022-06-20T16:32:14Z) - Subdiffusion and many-body quantum chaos with kinetic constraints [0.0]
We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics.
In particular, we show that quantum systems with 'Fredkin constraints' exhibit anomalous transport with dynamical exponent $z simeq 8/3$.
arXiv Detail & Related papers (2021-08-04T18:00:00Z) - Random generators of Markovian evolution: A quantum-classical transition
by superdecoherence [0.0]
Continuous-time Markovian evolution appears to be manifestly different in classical and quantum worlds.
We consider ensembles of random generators of $N$-dimensional Markovian evolution, quantum and classical ones.
We show how the two types of generators can be related by superdecoherence.
arXiv Detail & Related papers (2021-05-05T23:35:47Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.